We've updated our Privacy Policy to make it clearer how we use your personal data.

We use cookies to provide you with a better experience. You can read our Cookie Policy here.

Advertisement

New Technique Zaps Brain Cancer Cells in Lab Model

A purple outline of a brain on a black background.
Credit: Raman Oza/ Pixabay

Want a FREE PDF version of This News Story?

Complete the form below and we will email you a PDF version of "New Technique Zaps Brain Cancer Cells in Lab Model"

Technology Networks Ltd. needs the contact information you provide to us to contact you about our products and services. You may unsubscribe from these communications at any time. For information on how to unsubscribe, as well as our privacy practices and commitment to protecting your privacy, check out our Privacy Policy

Read time:
 

University of Saskatchewan (USask) researchers have developed a new method of killing brain cancer cells while preserving the delicate tissue around it. The technique also has a remarkable side-benefit: making chemotherapy treatment of brain cancer suddenly possible.


The technique involves placing long needles through the skull and sending pulses of electrical current into a glioblastoma tumour—the pernicious variety of brain cancer that caused Tragically Hip frontman Gord Downie’s death.


“A safer and more effective cancer treatment may be clinically possible,” said Dr. Mike Moser (MD), USask College of Medicine general surgery researcher and co-author of a study published recently in the Journal of Biomechanical Engineering.


“Patients with brain tumours may now have another option for local treatment that does not involve opening the skull, and does not involve heat or radiation.”


The USask-led research team created 3D models of cells to test which treatment protocols of electrical current—called irreversible electroporation (IRE or NanoKnife) and high-frequency irreversible electroporation (H-FIRE)—can destroy glioblastoma cells while minimizing the risk to surrounding tissues and blood vessels.


Glioblastoma, the most aggressive and deadly form of brain cancer, affects one in 25,000 Canadians, and only six per cent of those with the cancer currently survive longer than five years after diagnosis.


The technique relies on how glioblastoma cells respond to the electrical current. The researchers discovered tumour cells can be killed with a smaller electrical field than would kill surrounding healthy tissues.


They also discovered that this technique temporarily disrupts the blood-brain-barrier—the semi-permeable membrane that allows only tiny molecules to pass from the blood into the brain.


“The blood-brain barrier prevents many treatment drugs from getting to the tumour,” said USask biomedical engineering researcher Dr. Chris Zhang (PhD), co-author on the study. “We’ve shown that our technique can also help to open this barrier, so the brain is better able to receive other treatments—like chemotherapy or drugs that help increase the immune response—and help the patient fight the tumour in a systematic manner.”


Reference: Shu T, Ding L, Fang Z, et al. Lethal electric field thresholds for cerebral cells with irreversible electroporation and H-FIRE protocols: An in vitro three-dimensional cell model study. J Biomech Eng. 2022;144(10). doi: 10.1115/1.4054381


This article has been republished from the following materials. Note: material may have been edited for length and content. For further information, please contact the cited source.


Advertisement