We've updated our Privacy Policy to make it clearer how we use your personal data.

We use cookies to provide you with a better experience. You can read our Cookie Policy here.

Advertisement

Real-Time Tracking of Cancer Radiation Treatment Could Improve Therapy

A person wearing a face mask enters a CT scanner before radiotherapy.
Credit: National Cancer Institute/ Unsplash

Want a FREE PDF version of This News Story?

Complete the form below and we will email you a PDF version of "Real-Time Tracking of Cancer Radiation Treatment Could Improve Therapy"

Technology Networks Ltd. needs the contact information you provide to us to contact you about our products and services. You may unsubscribe from these communications at any time. For information on how to unsubscribe, as well as our privacy practices and commitment to protecting your privacy, check out our Privacy Policy

Read time:
 

Radiation, used to treat half of all cancer patients, can be measured during treatment for the first time with precise 3D imaging developed at the University of Michigan.


By capturing and amplifying tiny sound waves created when X-rays heat tissues in the body, medical professionals can map the radiation dose within the body, giving them new data to guide treatments in real time. It's a first-of-its-kind view of an interaction doctors have previously been unable to "see."


"Once you start delivering radiation, the body is pretty much a black box," said Xueding Wang, the Jonathan Rubin Collegiate Professor of Biomedical Engineering, professor of radiology and corresponding author of the study in Nature Biotechnology. He also leads U-M's Optical Imaging Laboratory.


"We don't know exactly where the X-rays are hitting inside the body, and we don't know how much radiation we're delivering to the target. And each body is different, so making predictions for both aspects is tricky."


Radiation is used in treatment for hundreds of thousands of cancer patients each year, bombarding an area of the body with high energy waves and particles, usually X-rays. The radiation can kill cancer cells outright or damage them so that they can't spread.


These benefits are undermined by a lack of precision, as radiation treatment often kills and damages healthy cells in the areas surrounding a tumor. It can also raise the risk of developing new cancers.


With real-time 3D imaging, doctors can more accurately direct the radiation toward cancerous cells and limit the exposure of adjacent tissues. To do that, they simply need to "listen."


When X-rays are absorbed by tissues in the body, they are turned into thermal energy. That heating causes the tissue to expand rapidly, and that expansion creates a sound wave.


The acoustic wave is weak and usually undetectable by typical ultrasound technology. U-M's new ionizing radiation acoustic imaging system detects the wave with an array of ultrasonic transducers positioned on the patient's side. The signal is amplified and then transferred into an ultrasound device for image reconstruction.


With the images in-hand, an oncology clinic can alter the level or trajectory of radiation during the process to ensure safer and more effective treatments.


"In the future, we could use the imaging information to compensate for uncertainties that arise from positioning, organ motion and anatomical variation during radiation therapy," said Wei Zhang, a research investigator in biomedical engineering and the study's first author. "That would allow us to deliver the dose to the cancer tumor with pinpoint accuracy."


Another benefit of U-M's technology is it can be easily added to current radiation therapy equipment without drastically changing the processes that clinicians are used to.


"In future applications, this technology can be used to personalize and adapt each radiation treatment to assure normal tissues are kept to a safe dose and that the tumor receives the dose intended," said Kyle Cuneo, associate professor of radiation oncology at Michigan Medicine. "This technology would be especially beneficial in situations where the target is adjacent to radiation sensitive organs such as the small bowel or stomach."


The research team is led by U-M, including Wang, Cuneo and Issam El Naqa, adjunct professor of radiation oncology at the U-M Medical School. The team works with partners at the Moffitt Cancer Center.


Reference: Zhang W, Oraiqat I, Litzenberg D, et al. Real-time, volumetric imaging of radiation dose delivery deep into the liver during cancer treatment. Nat Biotechnol. 2023. doi: 10.1038/s41587-022-01593-8


This article has been republished from the following materials. Note: material may have been edited for length and content. For further information, please contact the cited source.

Advertisement