We've updated our Privacy Policy to make it clearer how we use your personal data. We use cookies to provide you with a better experience. You can read our Cookie Policy here.

Advertisement

Viral Immunity Discovery Could Improve Vaccine Design

Viral Immunity Discovery Could Improve Vaccine Design content piece image
Walter and Eliza Hall Institute researchers Dr Joanna Groom (R) and Ms Amania Sheikh (L) have led research identifying a molecular switch that impacts immune responses to viral infections, and whether or not protective antibodies are produced. Their findings could lead to better strategies to develop vaccines for previously hard-to-prevent viruses. Credit: Walter and Eliza Hall Institute, Australia.
Listen with
Speechify
0:00
Register for free to listen to this article
Thank you. Listen to this article using the player above.

Want to listen to this article for FREE?

Complete the form below to unlock access to ALL audio articles.

Read time: 2 minutes

Our researchers have identified a molecular switch that impacts immune responses to viral infections, and whether or not protective antibodies are produced.

The team also made the surprising discovery that the immune system protects against different viruses via distinct pathways. Their findings could lead to better strategies to develop vaccines for previously hard-to-prevent viruses.


The research, led by Dr Joanna Groom and PhD student Ms Amania Sheikh, was published today in the journal Cell Reports.


At a glance


- Our researchers have identified that the protein T-bet determines how the immune system responds to viral infections.


- The research showed that T-bet enables immune T cells to distinguish between different viral infections, controlling whether or not protective antibodies are produced.


- Antibodies are an essential component of long-lived immunity to viruses, and this discovery could underpin the development of better vaccines to prevent viral diseases.


Molecular switch


Our immune system comprises a complex network of cells and signalling molecules that can produce a range of responses to infections, Ms Sheikh said. “Immune T cells are critical for coordinating specific immune responses, recruiting other cells and directing how we respond to different microbes such as bacteria, fungi or viruses,” she said.


“We knew that the protein T-bet was important for the function of many immune cells, and wanted to understand its role in a subset of immune T cells that help in the formation of protective antibodies.”


Antibodies are long-lived proteins that can be produced following an infection. They specifically bind to other proteins – such as those on a microbe’s surface – and are important for protecting us against repeat infections by the same microbe. Vaccines work by stimulating the production of antibodies that are specific to an infectious disease, preventing the infection from establishing.


Ms Sheikh said the team discovered that T-bet was an essential switch that enabled T cells to stimulate antibody production in response to viral infections. “The level of T-bet in T cells is influenced by factors such as how a virus enters the body, and how much inflammation it triggers in its early stages. This in turn influences the immune response to the virus,” she said.


Distinguishing viruses


These findings reconcile a controversy in the field about how the immune system can distinguish between different viral infections, and respond in distinct ways. “We compared the role of the T-bet switch in immune responses to two viruses, influenza and LCMV, a virus that can cause meningitis,” Dr Groom said.


“These viruses are thought to activate similar immune cells, yet we demonstrated specific changes between the responses could lead to very different amounts of protective antibodies. We showed that T-bet was critical for scaling how much antibody production occurred in response to a viral infection.”


The findings could underpin the development of more effective vaccines against viruses. “Most current vaccines to infectious diseases rely on robust and long-lived antibody production. If we can understand the precise triggers controlling how much antibody is produced in response to an infection, we should be able to develop vaccines that act similarly to stimulate protective antibody production,” Dr Groom said.

Reference
Context-Dependent Role for T-bet in T Follicular Helper Differentiation and Germinal Center Function following Viral Infection. Amania A. Sheikh et al. Cell Reports, VOLUME 28, ISSUE 7, P1758-1772.E4, AUGUST 13, 2019, doi.org/10.1016/j.celrep.2019.07.034.

This article has been republished from the following materials. Note: material may have been edited for length and content. For further information, please contact the cited source.