We've updated our Privacy Policy to make it clearer how we use your personal data.

We use cookies to provide you with a better experience. You can read our Cookie Policy here.

Advertisement
Why Can’t mTOR Inhibitors Kill Cancer?
News

Why Can’t mTOR Inhibitors Kill Cancer?

Why Can’t mTOR Inhibitors Kill Cancer?
News

Why Can’t mTOR Inhibitors Kill Cancer?

Mitochondrial elongation, induced by mTOR-inhibiting drugs, contributes to cell survival. Credit: Facility for Electron Microscopy Research/McGill University Department of Anatomy and Cell Biology.
Read time:
 

Want a FREE PDF version of This News Story?

Complete the form below and we will email you a PDF version of "Why Can’t mTOR Inhibitors Kill Cancer? "

First Name*
Last Name*
Email Address*
Country*
Company Type*
Job Function*
Would you like to receive further email communication from Technology Networks?

Technology Networks Ltd. needs the contact information you provide to us to contact you about our products and services. You may unsubscribe from these communications at any time. For information on how to unsubscribe, as well as our privacy practices and commitment to protecting your privacy, check out our Privacy Policy

Anti-cancer drugs called mTOR inhibitors slow the growth of cancer cells but show limited ability to cause cancer cell death. New studies explain why.


Masahiro Morita, Ph.D., assistant professor of molecular medicine in the Joe R. & Teresa Lozano Long School of Medicine at UT Health San Antonio, contributed to the research. He is a member of the university’s Sam & Ann Barshop Institute for Longevity & Aging Studies.


Before joining UT Health, Dr. Morita was a postdoctoral fellow at McGill University in Montreal, Quebec.


The cancer drugs act on a cell regulator called mTOR (Mechanistic Target of Rapamycin).


mTOR controls a process that determines how large our cells are and how many cells we have. mTOR also impacts mitochondria, which are the energy centers in our cells.


Mitochondria become elongated when mTOR activity is inhibited, Dr. Morita said. When mTOR is stimulated, these energy centers become fragmented.


“Increased fragmentation of mitochondria is implicated in some cancers,” Dr. Morita said.


mTOR controls expression of proteins that alter mitochondrial structure and function in ways that unexpectedly protect cells from death, the team reported.


This is why the cancer cells targeted by mTOR therapy are not dying.


“The next step is to test tandem therapy in cell studies, because it makes sense to combine an mTOR inhibitor with an agent that does kill cancer cells,” Dr. Morita said.


This article has been republished from materials provided by UT Health San Antonio. Note: material may have been edited for length and content. For further information, please contact the cited source.


Reference


Morita, M., Prudent, J., Basu, K., Goyon, V., Katsumura, S., Hulea, L., ... & St-Pierre, J. (2017). mTOR Controls Mitochondrial Dynamics and Cell Survival via MTFP1. Molecular Cell.


Advertisement