We've updated our Privacy Policy to make it clearer how we use your personal data.

We use cookies to provide you with a better experience, read our Cookie Policy

Tumour Regression after Intravenous Administration of Novel Tumour-targeted Nanomedicines

Video   Jul 22, 2014

 

About the Speaker

Christine Dufès is a Senior Lecturer at the Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow (United Kingdom). She obtained a Doctorate in Pharmacy (with Distinction and congratulations of the Jury) and a PhD (with a European Label, Distinction and congratulations of the Jury) from the University of Poitiers (France). After four years as a post-doctoral researcher at the Cancer Research UK Beatson Laboratories in Glasgow, she was appointed as a Lecturer at the Strathclyde Institute of Pharmacy and Biomedical Sciences in 2006 and became a Senior Lecturer in 2012. Abstract

The possibility of using genes as medicines to treat cancer is limited by the lack of safe and efficacious delivery systems able to deliver therapeutic genes selectively to tumours by intravenous administration, without secondary effects to healthy tissues. In order to remediate to this problem, we investigated if the conjugation of the polypropylenimine dendrimer to transferrin, whose receptors are overexpressed on numerous cancers, could result in a selective gene delivery to tumours after intravenous administration, leading to an increased therapeutic efficacy. The objectives of this study are to evaluate the targeting and therapeutic efficacies of a novel transferrin-bearing polypropylenimine dendrimer. The intravenous administration of transferrin-bearing polypropylenimine polyplex resulted in gene expression mainly in the tumours. Consequently, the intravenous administration of the delivery system complexed to a therapeutic DNA encoding TNF led to a rapid and sustained tumour regression over one month (90% complete response, 10% partial response on A431 human epidermoid tumours). It also resulted in tumour suppression for 60% of PC-3 and 50% of DU145 prostate tumours. The treatment was well tolerated by the animals, with no apparent signs of toxicity. Transferrin-bearing polypropylenimine is therefore a highly promising delivery system for cancer therapy.

 
 
 
 

Recommended Videos

Creating the UK's First "Three-Person" Baby

Video

Professor Sir Doug Turnbull from the Wellcome Trust Centre for Mitochondrial Research at the University of Newcastle explains his research into mitochondrial donation, the innovative treatment that hopes to stop faulty mitochondria being passed on from mother to child to prevent incurable genetic diseases.

The first babies conceived with this treatment through IVF may be born in the UK soon.

WATCH NOW

On the Pathway to Discovery, All Signals are Clear

Video

What if you could get high quality results without the hassle? Our wide range of assay solutions makes it easier to take an orthogonal approach to your cell-based assays, glean more biologically relevant information, and get to breakthroughs faster.

WATCH NOW

The Secrets of the Koala Genome

Video

From their diet to their diseases, koalas are pretty special. Now researchers have sequenced the koala’s genome, unlocking the secrets that make these fuzzy fellas so unique. The genome is revealing everything from how koalas cope with munching poisonous eucalyptus leaves, to how they respond to chlamydia infections. The hope is that these insights will not only help us understand these fascinating marsupials, but also aid conservation efforts across Australia.

WATCH NOW

 

Like what you just watched? You can find similar content on the communities below.

Drug Discovery Genomics Research

To personalize the content you see on Technology Networks homepage, Log In or Subscribe for Free

LOGIN SUBSCRIBE FOR FREE