Automation of sample preparation for metabolomic analysis using robotic platform

Yuki Soma¹, Toshiyuki Yamashita¹, Masatomo Takahash¹, Kuniyo Sugitate², Takeshi Serino², Hiromi Miyagawa³, Kenichi Suzuki³, Takatomo Kawamukai⁴, Teruhisa Shiota⁴, Kayoko Yamada⁴, Hans-Joachim Huebschmann⁵, Yoshihiro Izumi¹, Takeshi Bamba^{*1}

¹Kyushu University, Fukuoka, Japan; ²Agilent Technologies Co. Ltd, Hachioji, Japan; ³GL Sciences Inc., Shinjuku-ku, Japan; ⁴AMR Inc., Meguro-ku, Japan, ⁵CTC Analytics AG, Zwingen, Switzerland.

RESEARCH OBJECTIVE

Metabolomic analysis is prone to technical errors at different states of sample preparation (e.g. extraction, purification, derivatization). Therefore, reproducible sample preparation is vital for ensuring reproducible and reliable results. Additionally, sample preparation has historically been a time-consuming challenge and a crucial bottleneck in the whole analytical process. It is desired to develop a method for reproducible, reliable and labor and time-saving sample preparation. Application of robotic platform to automation of sample preparation is a promising approach in this direction. Herein, we developed an automated sample preparation protocol based on a robotic platform PAL RTC (CTC Analytics AG, Zwingen Switzerland), which represent a modified Bligh and Dyer method producing samples for both hydrophilic metabolomics using GC-MS and lipidomics using SFC-MS simultaneously

INSTRUMENTS & CONDITION

Robotic Platform

CTC Analytics AG PAL RTC

Robotic Tool : PAL RTC (CTC Analytics AG, Zwingen, Switzerland) Control Software: PAL sample control (CTC Analytics AG) : Chronos (Axel Semrau, Sprockhövel, Germany)

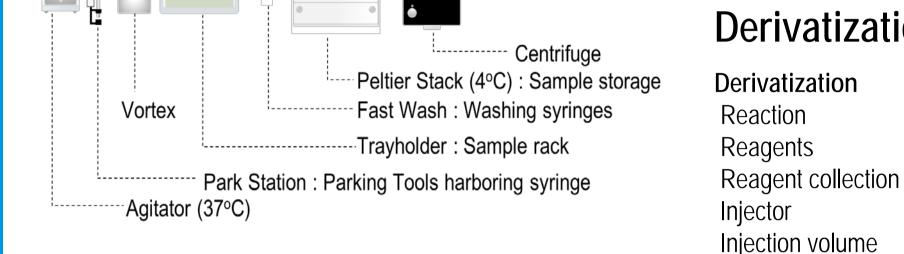
GC/MS for Hydrophilic Metabolomic Analysis

GC analytical conditions (Agilent GC 7890A)

Agilent 122-5532G (DB-5ms (DuraGuard) : 40 m x 250 µm x 0.25 µm) 1.581 mL/min (RTL : d27 Myristic acid (m/z 312.4) set to RT = 16.727 min) 250°C 60°C (1 min), 10°C /min, 325°C (10 min)

Split, 10:1

Agilent G1676AA Fiehn GC/MS Metabolomics RTL Library Method


MS analytical conditions (Agilent MSD 5975C)				
Aux temperature	290 °C			
Ionization	70 eV			
Ion source temperature	230 ° C			

and the second second
1

SFC/MS/MS for Lipidomic Analysis

SFC analytical conditions (ACQUITY UPC²)

Column	ACQUITY UPC ² Torus DEA (3.0mm×100mm,	1.7µm)			
Flow rate	1.0 mL/min				
Mobile phase	CO_2				
Modifier	95% Methanol and 5% Water with 0.1%(w/v) a	ammonium acetate			
Gradient condition	1% (0-1min), 1-65% (1-12min), 65% (12-18mi	n), 65-1% (18-18.1min), 1% (18.1-20min)			
Sample volume	1 µL				
Pump pressure	103.4 bar				
Oven temperature	50 ° C				
Analytical time	20 min				
Make up pump	0.2 mL/min				
MS analytical conditions (Xevo TQ-S micro)					
ES+	Extended	ACQUITY UPC ²			
Source voltages	Source				

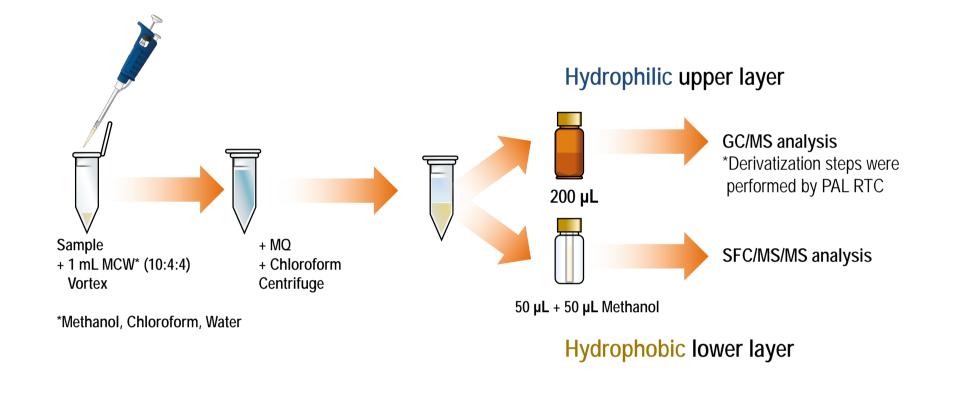
RTC

RobotArmLeft : Dealing all PAL modules and samples

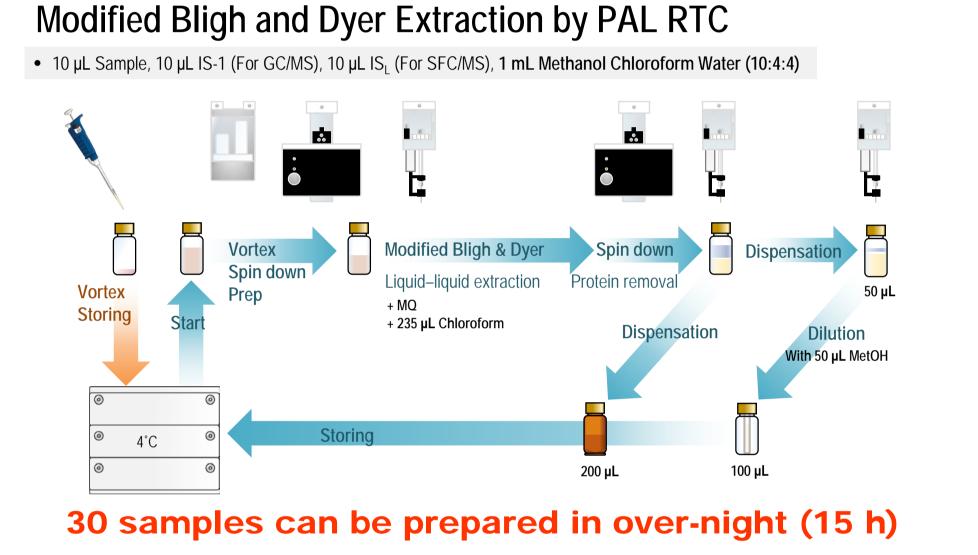
Derivatization and Sample Injection (PAL RTC)

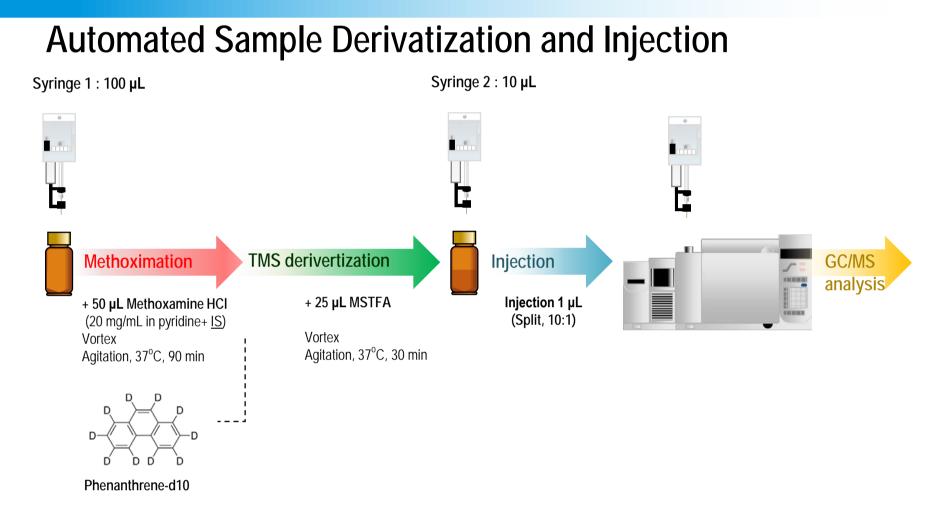
Scan (m/z 50-650)

in Agitator 37°C on Trayholder (w/o temperature control) Tool with 100 µL syringe Tool with 10 µL syringe 1 μL


Agilent GC-MS system 7980A-5975C with PAL RTC

Capillary 3.00 kV Source Temp 150 °C 60 V **Collision Cell Lenses** Cone Source temperatures Entrance 1.0 Desolvation Temp 500 °C 1.0 Exit **Source Gas Flow** Desolvation 1000 L/Hr 50 L/hr Cone




METHODS Conventional Manual Method

Modified Bligh and Dyer Extraction

Automated Methods using PAL RTC

"Just -in-Time" derivatization and injection to GC-MS

RESULTS & DISCUSSION Hydrophilic Metabolomic Analysis using GC/MS

Column

Mode

Column flow

Inlet temperature

Oven temperature

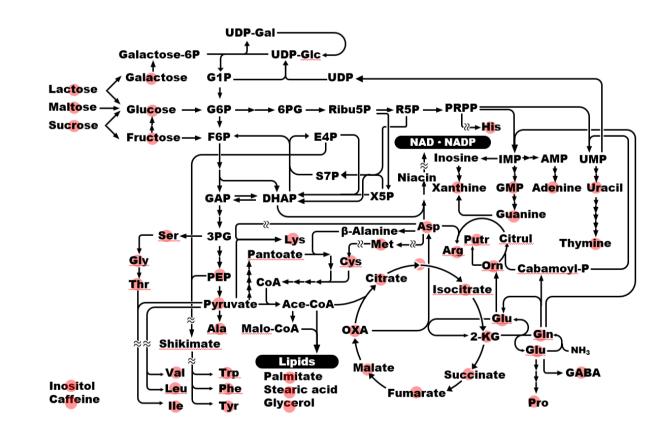
Sample Injection

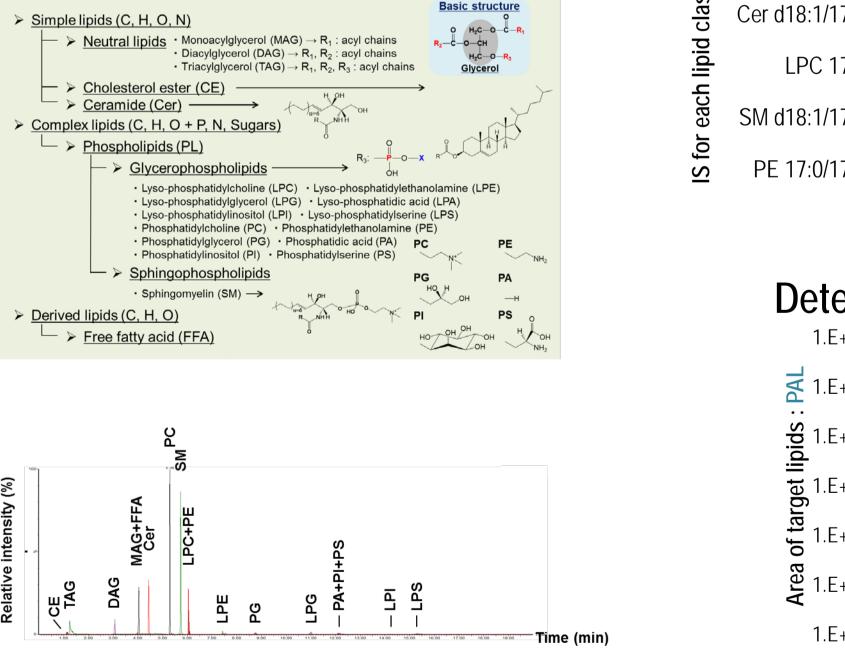
Target metabolites of GC/MS analysis

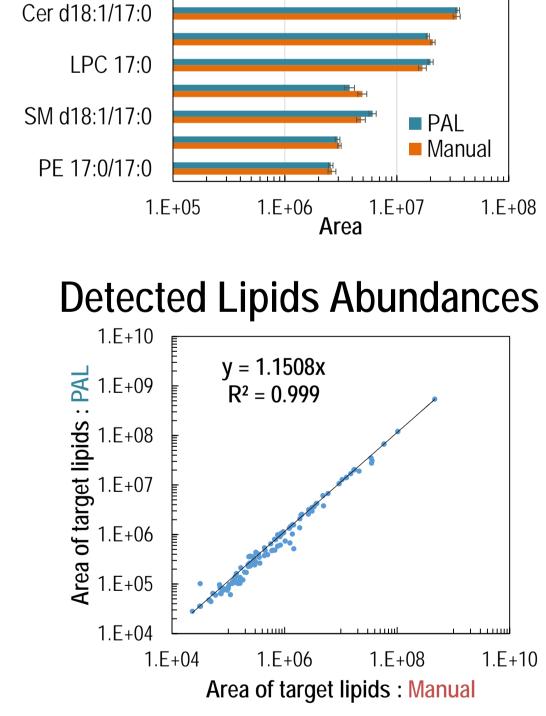
Sample : Rat and mouse serum Standard substances : GC • GC/MS Metabolomics analysis standard mix (GL science Inc., 1021-58400)

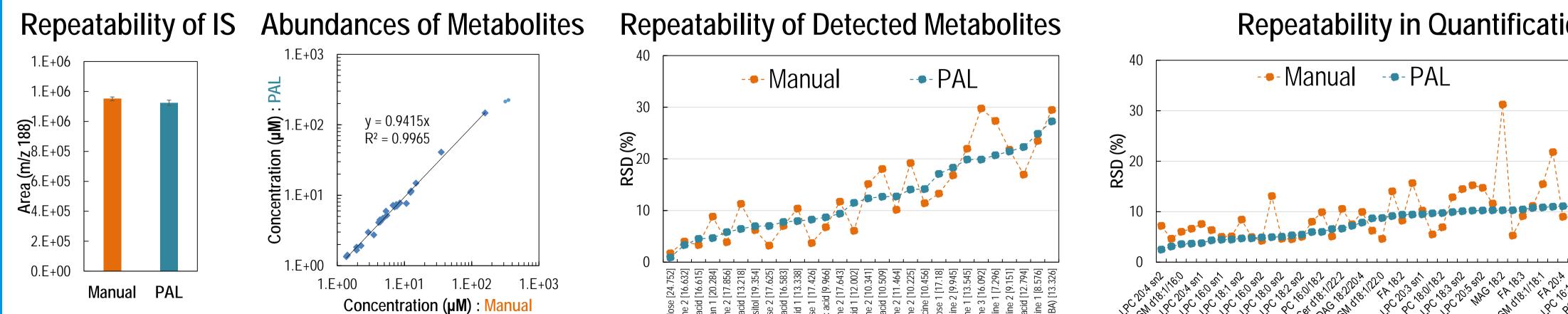
Lipidomic Analysis using SFC/MS

Target lipids of SFC/MS/MS analysis

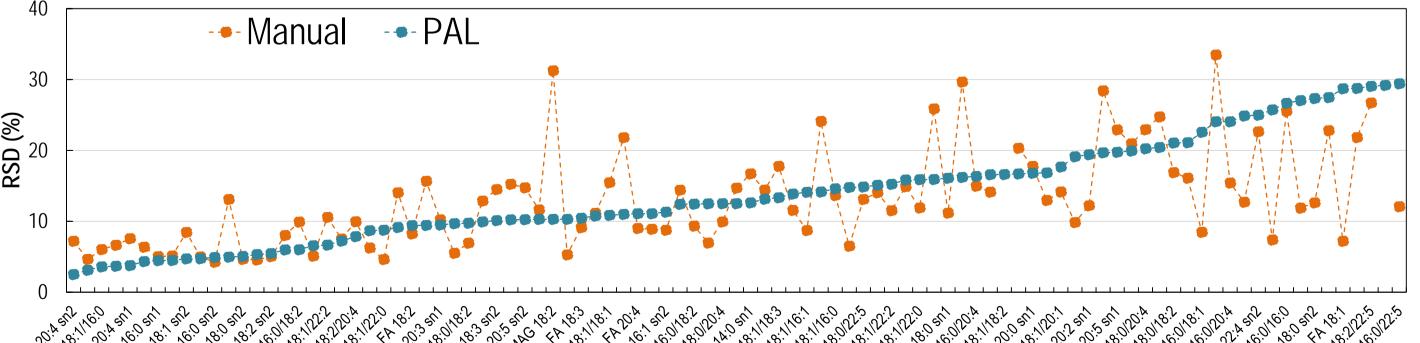

IS Abundances in Serum samples




	JC OCHI DI MCIADOIONICS analysis sianaa	$ \mathbf{U} = \mathbf{U} _{\mathbf{U}} = \mathbf{U} _{\mathbf{U}} = \mathbf{U} _{\mathbf{U}}$	J0+00 <i>j</i>
Number of components	: 52	Concentration	: 40 µM (5 premix groups, 200 µM)
Dilution solvent	: Methanol and some additives	Storage	: -30°C


Standard substrates

Pyruvic acid	Glycolic acid	Phosphoric acid	Glycerol
Malic acid	4-Aminobutyric acid	α-Ketoglutaric acid	Aconitic acid
Palmitic acid	Stearic acid	Ergosterol	Valine
Proline	Glycine	Serine	Alanine
Aspartic acid	Cysteine	Glutamic acid	Phenylalanine
Ornithine	Glutamine	Lysine	Histidine
Fructose	Glucose	Inositol	Sucrose
Maltose	Raffinose	Uracil	Thymine
Adenine	Xanthine	Guanine	Inosine
Succinic acid	Citiric acid	Leucine	Threonine
Fumaricacid	Isocitric acid	Isoleucine	Methionine
Asparagine	Tyrosine	β-Lactose	Cytosine
Putrescine	Tryptophan	Trehalose	Caffeine



Manual vs PAL

Detected lipids number and amounts were same, but repeatabilities were slightly different

Detected metabolites number, amounts, repeatability were almost comparative

Conclusions and Future Works

Conclusions

• ~30 serum samples were extracted and dispensed into hydrophobic and hydrophilic samples automatically. Detected metabolites number and abundances were almost comparable between manual and PAL method. • Repeatability in quantification were almost comparable between manual and PAL method.

Future works

- Under developing : Sample storage condition, scrutiny of extraction efficiency
- Under investigation: reason of difference in reproducibility between PAL and manual procedure

Resource and Other Information

Bamba-Lab

Division of Metabolomics, Medical Institute of Bioregulation, Kyushu University 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan

References

- Bligh, E. Graham, and W. Justin Dyer. "A rapid method of total lipid extraction and purification." Canadian journal of biochemistry and physiology 37.8 (1959): 911-917.
- Kind, Tobias, et al. "FiehnLib: mass spectral and retention index libraries for metabolomics based on quadrupole and time-of-flight gas chromatography/mass spectrometry." Analytical chemistry 81.24 (2009): 10038-10048.
- Bamba, Takeshi. "Application of supercritical fluid chromatography to the analysis of hydrophobic metabolites." Journal of separation science 31.8 (2008): 1274-1278.