We've updated our Privacy Policy to make it clearer how we use your personal data. We use cookies to provide you with a better experience. You can read our Cookie Policy here.

Advertisement

3D Images of C4 Plant Cellular Components Created

A field of maize plants.
Maize plants, one of the two C4 species that have had their plant cell properties quantified by Lee and his colleagues. Credit: ROGUE Project.
Listen with
Speechify
0:00
Register for free to listen to this article
Thank you. Listen to this article using the player above.

Want to listen to this article for FREE?

Complete the form below to unlock access to ALL audio articles.

Read time: 1 minute

A team from the University of Illinois has quantified the plant cell properties in two C4 species, including cell shape, chloroplast size, and distribution of cell-to-cell connections called plasmodesmata, providing information that can change how people model photosynthesis thanks to their 3D reconstructions.


“Our motivation for this project was to provide critical missing baseline information about C4 plant cell structure,” said Moonsub Lee, a postdoctoral researcher at Illinois who, along with Ryan Boyd,  led this work for a research project called Renewable Oil Generated with Ultra-productive Energycane (ROGUE). “We quantified a lot of information about the different types of cells involved in C4 photosynthesis that we believe will reduce gaps in understanding.”


This work is part of ROGUE, a research project that aims to create an abundant and sustainable supply of oil that can be used to produce biodiesel, biojet fuel, and bioproducts with support from the U.S. Department of Energy. Much of ROGUE’s work focuses on two C4 plants, energycane and miscanthus. Lee and his colleagues believe by quantifying cellular structures they can improve modeling and eventually, production.

Want more breaking news?

Subscribe to Technology Networks’ daily newsletter, delivering breaking science news straight to your inbox every day.

Subscribe for FREE

Published recently in New Phytologist, their work “Exploring 3D leaf anatomical traits for C4 photosynthesis: chloroplast and plasmodesmata pit field size in maize and sugarcane,” shows detailed structures, opening the door for more analysis than was possible with previous 2D images. Their findings extend current perceptions of mesophyll cell shape, finding a more intricate structure than the bundle sheath cell which is closer to a simple cylinder. 


“The most exciting aspect of this work to me was the ability to visualize the plasmodesmatal interconnections among the different cell types” said Don Ort, the Robert Emerson Professor of Plant Biology and Crop Sciences at the University of Illinois.


The group plans to work with others on the ROUGE project who have engineered Energycane with larger chloroplasts as a strategy to improve photosynthetic efficiency in dynamic light.


“This work was our initial attempt at 3D quantification and visualization of C4 plant structures, said Lee. “The images we were able to observe with these microscopy techniques have facilitated new ideas and questions that we are excited to explore.”


Reference: Lee M, Boyd RA, Boateng KA, Ort DR. Exploring 3D leaf anatomical traits for C 4 photosynthesis: chloroplast and plasmodesmata pit field size in maize and sugarcane. New Phytologist. 2023:nph.18956. doi: 10.1111/nph.18956


This article has been republished from the following materials. Note: material may have been edited for length and content. For further information, please contact the cited source.