We've updated our Privacy Policy to make it clearer how we use your personal data.

We use cookies to provide you with a better experience. You can read our Cookie Policy here.

Advertisement
A Nanofiber Matrix for Healing
News

A Nanofiber Matrix for Healing

A Nanofiber Matrix for Healing
News

A Nanofiber Matrix for Healing

Credit: Kyoto University
Read time:
 

Want a FREE PDF version of This News Story?

Complete the form below and we will email you a PDF version of "A Nanofiber Matrix for Healing"

First Name*
Last Name*
Email Address*
Country*
Company Type*
Job Function*
Would you like to receive further email communication from Technology Networks?

Technology Networks Ltd. needs the contact information you provide to us to contact you about our products and services. You may unsubscribe from these communications at any time. For information on how to unsubscribe, as well as our privacy practices and commitment to protecting your privacy, check out our Privacy Policy

A matrix made of gelatin nanofibers on a synthetic polymer microfiber mesh may provide a better way to culture large quantities of healthy human stem cells.


Developed by a team of researchers led by Ken-ichiro Kamei of Kyoto University’s Institute for Integrated Cell-Material Sciences (iCeMS), the ‘fiber-on-fiber’ (FF) matrix improves on currently available stem cell culturing techniques.


Researchers have been developing 3D culturing systems to allow human pluripotent stem cells (hPSCs) to grow and interact with their surroundings in all three dimensions, as they would inside the human body, rather than in two dimensions, like they do in a petri dish.


Pluripotent stem cells have the ability to differentiate into any type of adult cell and have huge potential for tissue regeneration therapies, treating diseases, and for research purposes.


Most currently reported 3D culturing systems have limitations, and result in low quantities and quality of cultured cells.


Kamei and his colleagues fabricated gelatin nanofibers onto a microfiber sheet made of synthetic, biodegradable polyglycolic acid. Human embryonic stem cells were then seeded onto the matrix in a cell culture medium.


The FF matrix allowed easy exchange of growth factors and supplements from the culture medium to the cells. Also, the stem cells adhered well to the matrix, resulting in robust cell growth: after four days of culture, more than 95% of the cells grew and formed colonies.


The team also scaled up the process by designing a gas-permeable cell culture bag in which multiple cell-loaded, folded FF matrices were placed. The system was designed so that minimal changes were needed to the internal environment, reducing the amount of stress placed on the cells. This newly developed system yielded a larger number of cells compared to conventional 2D and 3D culture methods.


“Our method offers an efficient way to expand hPSCs of high quality within a shorter term,” write the researchers in their study published in the journal Biomaterials. Also, because the use of the FF matrix is not limited to a specific type of culture container, it allows for scaling up production without loss of cell functions. “Additionally, as nanofiber matrices are advantageous for culturing other adherent cells, including hPSC-derived differentiated cells, FF matrix might be applicable to the large-scale production of differentiated functional cells for various applications,” the researchers conclude.


Reference:

Liu, L., Kamei, K., Yoshioka, M., Nakajima, M., Li, J., Fujimoto, N., . . . Chen, Y. (2017). Nano-on-micro fibrous extracellular matrices for scalable expansion of human ES/iPS cells. Biomaterials, 124, 47-54. doi:10.1016/j.biomaterials.2017.01.039 


This article has been republished from materials provided by Kyoto University. Note: material may have been edited for length and content. For further information, please contact the cited source.

Advertisement