We've updated our Privacy Policy to make it clearer how we use your personal data. We use cookies to provide you with a better experience. You can read our Cookie Policy here.

Advertisement

Cactus Root Inspires Innovative Material

Listen with
Speechify
0:00
Register for free to listen to this article
Thank you. Listen to this article using the player above.

Want to listen to this article for FREE?

Complete the form below to unlock access to ALL audio articles.

Read time: 1 minute

During rare desert rainfalls, cacti waste no time sopping up and storing a storm’s precious precipitation. Inspired by this natural phenomenon, scientists report in a study appearing ACS Macro Letters that they have developed a material that mimics cactus roots’ ability to rapidly absorb and retain vast amounts of water with a minimal amount of evaporation. They say this unique material could lead to new and improved cosmetics, medical devices and other everyday products.

Like all living things, cacti need water to survive. Yet they thrive in some of the world’s driest places. The key is the plant’s shallow, but extensive root system that quickly soaks up rainfall, which seldom penetrates more than just a few inches into the soil. During droughts, the roots dehydrate and shrink, creating air gaps that prevent water from escaping back into the soil. Intrigued by these traits, Sang Joon Lee, Hyejeong Kim and Junho Kim wanted to create a durable material that could effectively absorb and store water, without changing other physical properties.


The research team sought to replicate the key features of the cactus root system. To imitate the cactus root and its outer covering, they made a material composed of cellulose fibers, agarose cyrogel and microparticles.  Then, they made a cylindrical-shaped gel and freeze-dried it to form a structure that mimics the layered composition of cactus root epidermis. Laboratory tests suggest that the resulting cactus-root-inspired material (CRIM) is capable of absorbing water nearly 930 times faster than it loses through evaporation. The researchers say the mixture of cellulose fibers, microparticles and cryogel is adjustable for particular needs. For example, adding water-repellant microparticles to this system could produce CRIMs useful in oil separation and other oil-based engineering processes. They conclude that CRIMs could eventually have a host of applications in agriculture, cosmetics and medicine.

This article has been republished from materials provided by the American Chemical Society. Note: material may have been edited for length and content. For further information, please contact the cited source.

Reference
Fast and Efficient Water Absorption Material Inspired by Cactus Root. Hyejeong Kim, Junho Kim, and Sang Joon Lee. ACS Macro Lett., 2018, 7 (3), pp 387–394, DOI: 10.1021/acsmacrolett.8b00014.