We've updated our Privacy Policy to make it clearer how we use your personal data.

We use cookies to provide you with a better experience. You can read our Cookie Policy here.

Cellular Fingertips May Help Cells "Speak" to Each Other

Cellular Fingertips May Help Cells "Speak" to Each Other

Cellular Fingertips May Help Cells "Speak" to Each Other

Cellular Fingertips May Help Cells "Speak" to Each Other

The lattice light sheet microscopic images of the filopodia by expressing the I-BAR domain protein MIM. The vesicles that were released by the scission of MIM-induced filopodia are highlighted by yellow. Credit: Yuko Mimori-Kiyosue and Shiro Suetsugu
Read time:

Want a FREE PDF version of This News Story?

Complete the form below and we will email you a PDF version of "Cellular Fingertips May Help Cells "Speak" to Each Other"

First Name*
Last Name*
Email Address*
Company Type*
Job Function*
Would you like to receive further email communication from Technology Networks?

Technology Networks Ltd. needs the contact information you provide to us to contact you about our products and services. You may unsubscribe from these communications at any time. For information on how to unsubscribe, as well as our privacy practices and commitment to protecting your privacy, check out our Privacy Policy

What if you found out that you could heal using only a finger? It sounds like science fiction, reminiscent of the 1982 movie E.T. Well, it turns out that your body's own cells can do something similarly unexpected. Researchers at Nara Institute of Science and Technology (NAIST) report in a new study seen in Developmental Cell a means by which cells may use "fingers" to communicate instructions for wound closure.

NAIST project leader Shiro Suetsugu has devoted his career to studying how cells shape themselves, initiate and accept communication among one other. An under-appreciated means of doing so is through filopodia, small finger-like cellular projections that are more commonly known to help certain cells crawl in the body.

"Filopodia are well-recognized as cellular locomotion machinery. Less understood is how filopodia help cells communicate, and the molecular details of how this is done," says Suetsugu.

A focus of this line of research should be the proteins known by the acronym I-BAR. I-BAR proteins are well-known to help bend the plasma membrane, the "skin" of many cells, for filopodia formation and thus facilitate movement.

"We identified an I-BAR protein that severs filopodia," says Suetsugu. An important element of this scission may be mechanical force, a stimulus that your body commonly applies to cells.

"Laser experiments showed that the force required for scission is approximately 8-20 kilopascals. These forces are similar to the 4-13 kilopascals, experienced by cells in blood capillaries," Suetsugu says.

Severed filopodia go on to form structures called extracellular vesicles, a popular research topic in biology. Extracellular vesicles used to basically be considered the trash bags of cells, used for disposing cellular waste. However, the vesicles are now considered to be communication packets rather than waste bags. "The pertinence of these vesicles to cancer metastasis has piqued researchers' and clinicians' interest," notes Suetsugu.

What does this have to do with cell-cell communication? A simulated cell-scale wound healed faster when it was treated with filopodia-derived extracellular vesicles than if untreated. In other words, an I-BAR protein first induced filopodia scission and vesicle production. These vesicles then sent cellular signals that promoted cell migration toward one another, in a way that may promote wound closure.

By understanding how cells fully use their molecular machinery to send instructions to other cells, Suetsugu is optimistic that medical practitioners will develop new means to safely treat cancer and other diseases.

"Certain BAR proteins are pertinent to cancer cell biology. BAR proteins are also pertinent to cell locomotion. By learning more about how these proteins aid cell-cell communication, we may find better ways to stop cancer cells from spreading," he says.

Reference: Nishimura T, Oyama T, Hu HT, et al. Filopodium-derived vesicles produced by MIM enhance the migration of recipient cells. Dev Cell. 2021. doi.org/10.1016/j.devcel.2021.02.029.

This article has been republished from the following materials. Note: material may have been edited for length and content. For further information, please contact the cited source.