We've updated our Privacy Policy to make it clearer how we use your personal data.

We use cookies to provide you with a better experience. You can read our Cookie Policy here.

Advertisement
Cellular Process Could Reveal Insights Into Aging-Related Diseases
News

Cellular Process Could Reveal Insights Into Aging-Related Diseases

Cellular Process Could Reveal Insights Into Aging-Related Diseases
News

Cellular Process Could Reveal Insights Into Aging-Related Diseases

Credit: Mohamed Nuzrath/ Pixabay
Read time:
 

Want a FREE PDF version of This News Story?

Complete the form below and we will email you a PDF version of "Cellular Process Could Reveal Insights Into Aging-Related Diseases"

First Name*
Last Name*
Email Address*
Country*
Company Type*
Job Function*
Would you like to receive further email communication from Technology Networks?

Technology Networks Ltd. needs the contact information you provide to us to contact you about our products and services. You may unsubscribe from these communications at any time. For information on how to unsubscribe, as well as our privacy practices and commitment to protecting your privacy, check out our Privacy Policy

The study of autophagy – the recycling and repair process within cells – has huge potential to aid in fighting the ageing process, bacterial and viral infections and diseases including cancer, Alzheimer’s and Parkinson’s.


A team of researchers led by Professor Ioannis Nezis from the School of Life Sciences at the  University of Warwick, has identified the molecular and cellular mechanisms that regulate selective autophagy in the fruit fly Drosophila melanogaster.


While the function of these processes is increasingly understood in mammals this is one of the first studies in insects.


The study opens new avenues in our understanding of the regulation of Golgi complex turnover by selective autophagy. The Golgi complex is a stack of flat sacs formed by membranes inside the cell. It prepares proteins and fat molecules for transportation and use in other places inside and outside the cell.


Professor Nezis and his team used gene editing, confocal and electron microscopy to identify a novel type of selective autophagy, termed Golgiphagy, meaning how cells degrade a cell organelle called Golgi complex by autophagy.


In the paper, ‘GMAP is an Atg8a-inteacting protein that regulates Golgi turnover in Drosophila’ published today [31] in the journal Cell Reports, PhD students Ashrafur Rahman, Raksha Gohel and colleagues describe how gene editing was used to create fruit flies unable to process specific proteins by autophagy.


Comparison of the gene edited flies with their wild type counterparts showed:-

  • That Atg8a’s LDS docking site is important in the execution of selective autophagy
  • That selective autophagy regulates the size and morphology of the Golgi apparatus
  • That the GMAP (Golgi microtubule-associated protein) protein interacts with Atg8a and the LIR motif at position 320-325 is important for this interaction 
  • That GMAP’s LIR motif is important Golgiphagy

 

Lead author of the research Professor Ioannis Nezis from the School of Life Sciences at the University of Warwick, said:


“Understanding the molecular mechanisms of selective autophagy of Golgi complex in cells will help open new avenues of research that will assist elucidating the underlying cellular mechanisms of diseases.”


Reference: Rahman A, Lőrincz P, Gohel R, et al. GMAP is an Atg8a-interacting protein that regulates Golgi turnover in Drosophila. Cell Rep. 2022;39(9). doi: 10.1016/j.celrep.2022.110903


This article has been republished from the following materials. Note: material may have been edited for length and content. For further information, please contact the cited source.

 
Advertisement