We've updated our Privacy Policy to make it clearer how we use your personal data.

We use cookies to provide you with a better experience. You can read our Cookie Policy here.

Advertisement
Cellular Senescence Is Caused by Irreversible Damage to the Genome
News

Cellular Senescence Is Caused by Irreversible Damage to the Genome

Cellular Senescence Is Caused by Irreversible Damage to the Genome
News

Cellular Senescence Is Caused by Irreversible Damage to the Genome

Two aging cells surrounded by micro-nuclei are retained by a chromosome bridge that unites them into senescence (Cell DNA/High resolution microscopy). Credit: Marc-Alexandre Olivier and Nicolas Malaquin, CRCHUM (2021)
Read time:
 

Want a FREE PDF version of This News Story?

Complete the form below and we will email you a PDF version of "Cellular Senescence Is Caused by Irreversible Damage to the Genome"

First Name*
Last Name*
Email Address*
Country*
Company Type*
Job Function*
Would you like to receive further email communication from Technology Networks?

Technology Networks Ltd. needs the contact information you provide to us to contact you about our products and services. You may unsubscribe from these communications at any time. For information on how to unsubscribe, as well as our privacy practices and commitment to protecting your privacy, check out our Privacy Policy

In a study published in Nucleic Acids Research, the team of cancer researcher Francis Rodier, an Université de Montréal professor, shows for the first time that cellular senescence, which occurs when aging cells stop dividing, is caused by irreversible damage to the genome rather than simply by telomere erosion.

This discovery goes against the scientific model most widely adopted in the last 15 years, which is based on one principle: telomeres, caps located at the ends of chromosomes whose purpose is to protect genetic information, erode with each cell division. When they get too short, they tell the cell to stop dividing, thus preventing damage to its DNA. Made dormant, the cell enters senescence.

For this model to be valid, the inactivation of a single telomere should be sufficient to activate the senescence program. Rodier’s laboratory and many others had already observed that several dysfunctional telomeres were necessary.

“What’s most surprising is that, before really entering senescence, the cells divide one last time,” said Rodier. “In fact, the cell division caused by telomere dysfunction is so unstable that it ends up creating genetic defects. Contrary to what was believed, senescent cells have an abnormal genome. That’s what we show in our study.”

Snapshots of the life of a cell


To achieve such results, Rodier’s research team was able to count on state-of-the-art imaging equipment funded by the Institut du cancer de Montréal.

“Genetically, we were able to reproduce the phenomenon of cellular aging in the laboratory and ensured that all the telomeres of a population of cells became dysfunctional,” said PhD student Marc-Alexandre Olivier, co-first author of the study with former colleague Sabrina Ghadaouia, currently pursuing postdoctoral studies in England. “With our equipment, we then observed in real time what was happening inside each single cell.”

With time, senescent cells build up in the body and are responsible for the development of diseases such as cancer. This study, therefore, opens up new research opportunities.

For example, could telomeres be repaired prior to the senescence phase, thereby preventing cellular aging and genomic instability? The scientific community has been debating this potential cellular rejuvenation for several years now. Nevertheless, these emerging therapeutic approaches still need fine-tuning.

Reference: Ghadaouia S, Olivier MA, Martinez A, et al. Homologous recombination-mediated irreversible genome damage underlies telomere-induced senescence. Nucleic Acids Res. 2021;(gkab965). doi: 10.1093/nar/gkab965

This article has been republished from the following materials. Note: material may have been edited for length and content. For further information, please contact the cited source.


Advertisement