We've updated our Privacy Policy to make it clearer how we use your personal data. We use cookies to provide you with a better experience. You can read our Cookie Policy here.

Advertisement

Collaboration between TAP Biosystems and UCL to Develop Biomimetic 3D Cancer Models

Listen with
Speechify
0:00
Register for free to listen to this article
Thank you. Listen to this article using the player above.

Want to listen to this article for FREE?

Complete the form below to unlock access to ALL audio articles.

Read time: 1 minute

The three way collaboration, between TAP Biosystems and researchers on two UCL sites at the Division of Surgery and Interventional Science, will focus on developing technology to generate advanced 3D cancer tissue models for use in research and drug discovery. Their aim is to use TAP’s RAFT™ (Real Architecture for 3D Tissue™) technology to reproduce solid tumour micro architecture, by seeding co-cultures of cancer cells, fibroblasts and endothelial cells into a collagen gel. With the correct conditions, fibroblasts aggregate around the cancer cells to form connective tissue, and the endothelial cells fuse to form lumens, producing angiogenic growth factor and rudimentary vasculature, so that the final co-culture has many of the features and behaviour of a solid tumour.

Dr Marilena Loizidou, Senior Lecturer, Division of Surgery and Interventional Science at
UCL explained:”Our ultimate aim is to engineer reproducible 3D tissues to test the efficacy of compounds and biologics to treat solid tumours in diseases such as breast, bowel and bladder cancer. By engineering these types of tissues, we’ll have a far reaching impact on translational research, as we could more readily tease out the mechanisms of why drugs do or don’t act effectively on tumours.”

Dr Umber Cheema, Research Fellow at the Division of Surgery and Interventional Science at UCL added: “When making 3D cancer tissues it is very difficult to do this in a controlled, reproducible way, and we need help making the tissue formation process consistent for pharma and biotech use. TAP Biosystems is a company that has a proven background, as well as a progressive vision. We believe utilising the RAFT platform is the best way to make our science relevant and are very pleased to be partnering with TAP on this project.”

Dr Rosemary Drake, CSO at TAP Biosystems said: “We are delighted to be extending our collaborative partnerships at UCL to include a new application of the RAFT process. We look forward to working together with Dr Marilena Loizidou and Dr Umber Cheema’s teams of experts to develop novel 3D human tumour models that reproduce the cells’ in vivo environment. Using this approach to create more realistic and complex models, should mean that data are more robust and relevant and drug screening becomes more efficient. This could result in significant cost savings, and, more importantly, may contribute to reducing the amount of pre-clinical animal studies required for testing new oncology therapies.”