We've updated our Privacy Policy to make it clearer how we use your personal data.

We use cookies to provide you with a better experience. You can read our Cookie Policy here.

Advertisement
Dental Cell Type Atlas Produced
News

Dental Cell Type Atlas Produced

Dental Cell Type Atlas Produced
News

Dental Cell Type Atlas Produced

Credit: Pixabay
Read time:
 

Want a FREE PDF version of This News Story?

Complete the form below and we will email you a PDF version of "Dental Cell Type Atlas Produced"

First Name*
Last Name*
Email Address*
Country*
Company Type*
Job Function*
Would you like to receive further email communication from Technology Networks?

Technology Networks Ltd. needs the contact information you provide to us to contact you about our products and services. You may unsubscribe from these communications at any time. For information on how to unsubscribe, as well as our privacy practices and commitment to protecting your privacy, check out our Privacy Policy

New knowledge on the cellular makeup and growth of teeth can expedite developments in regenerative dentistry - a biological therapy for damaged teeth - as well as the treatment of tooth sensitivity. 

Teeth develop through a complex process in which soft tissue, with connective tissue, nerves and blood vessels, are bonded with three different types of hard tissue into a functional body part. As an explanatory model for this process, scientists often use the mouse incisor, which grows continuously and is renewed throughout the animal's life.

Despite the fact that the mouse incisor has often been studied in a developmental context, many fundamental questions about the various tooth cells, stem cells and their differentiation and cellular dynamics remain to be answered.

Using a single-cell RNA sequencing method and genetic tracing, researchers at Karolinska Institutet, the Medical University of Vienna in Austria and Harvard University in the USA have now identified and characterised all cell populations in mouse teeth and in the young growing and adult human teeth.

"From stem cells to the completely differentiated adult cells we were able to decipher the differentiation pathways of odontoblasts, which give rise to dentine - the hard tissue closest to the pulp - and ameloblasts, which give rise to the enamel," say the study's last author Igor Adameyko at the Department of Physiology and Pharmacology, Karolinska Institutet, and co-author Kaj Fried at the Department of Neuroscience, Karolinska Institutet. "We also discovered new cell types and cell layers in teeth that can have a part to play in tooth sensitivity."

Some of the finds can also explain certain complicated aspects of the immune system in teeth, and others shed new light on the formation of tooth enamel, the hardest tissue in our bodies.

"We hope and believe that our work can form the basis of new approaches to tomorrow's dentistry. Specifically, it can expedite the fast expanding field of regenerative dentistry, a biological therapy for replacing damaged or lost tissue."

The results have been made publicly accessible in the form of searchable interactive user-friendly atlases of mouse and human teeth. The researchers believe that they should prove a useful resource not only for dental biologists but also for researchers interested in development and regenerative biology in general.

Reference: Krivanek, J., Soldatov, R.A., Kastriti, M.E. et al. Dental cell type atlas reveals stem and differentiated cell types in mouse and human teeth. Nat Commun. 2020. https://doi.org/10.1038/s41467-020-18512-7

This article has been republished from the following materials. Note: material may have been edited for length and content. For further information, please contact the cited source.

Advertisement