We've updated our Privacy Policy to make it clearer how we use your personal data. We use cookies to provide you with a better experience. You can read our Cookie Policy here.


Different Responses in Individual Cells Give Muscles More Control

Different Responses in Individual Cells Give Muscles More Control content piece image
Credit: Free-Photos/Pixabay
Listen with
Register for free to listen to this article
Thank you. Listen to this article using the player above.

Want to listen to this article for FREE?

Complete the form below to unlock access to ALL audio articles.

Read time: 1 minute

Minute differences in individual muscle cell contractions allow the entire muscle to flex with greater control and accuracy. Long dismissed as “noise” or error, experts now suspect that biological systems may have evolved to include unavoidable variation as a form of information in their communication channels. A team of experts from the University of Tokyo published these findings in the scientific journal Cell Reports.

“The differences between cells’ responses to stimulation is actually another form of information,” said Professor Shinya Kuroda, leader of the research lab that performed the experiments at the University of Tokyo Graduate School of Science and a co-author of the recent research publication.

Although robots might be designed to respond identically in unison, each cell in a natural system contains all manner of idiosyncrasies, such as unique patterns of gene expression. Each cell in a muscle receives the same nerve signal to contract or relax, but one cell might respond with a strong contraction while its neighbor responds with a weak contraction. The scientific community previously suspected that these variations were caused by information being lost along the communication channel.

In their new experiments, UTokyo researchers monitored the contractions of 551 individual mouse muscle cells grown in lab dishes, giving each cell 200 tiny electrical shocks to observe how different cells reacted to the same stimulation.

“Previously, no one had the technical ability to do these repeated measurements of single cells,” said Project Research Associate Takumi Wada, first author of the recent research publication.

Regardless of whether a cell responded strongly or weakly to a particular stimulation, when any cell received a greater electrical shock, it reacted with a greater response. Moreover, individual cells were consistent; every time a cell received the same shock stimulation, it responded in the same way.

“We observed that each cell is quite good at responding to the stimulation accurately. They are simply different,” said Kuroda.

Reliable and accurate responses to all levels of stimulation ensure that cells’ differences remain consistent and therefore meaningful, rather than unpredictable and chaotic. The variation between cells means that, as a whole, the muscle tissue can detect a wider range of stimulation intensities and can respond with a corresponding wider range of control. If all cells responded identically, the whole muscle tissue could only perform on/off binary responses.

Researchers performed additional experiments using single fibers of mouse skeletal muscle and also analyzed recordings of facial muscle activity routinely collected during surgeries on human patients.

This concept of individual cell variability communicating essential information through biological systems may also be relevant to other processes where life requires a wide spectrum of responses, like hormone secretion. For example, the pancreas may be able to release different amounts of insulin hormone due to individual beta cells of the pancreas responding differently to blood sugar levels.

Wada T, Hironaka K, Wataya M et al. Single-Cell Information Analysis Reveals That Skeletal Muscles Incorporate Cell-to-Cell Variability as Information Not Noise. Cell Rep. 2020;32(9). doi:10.1016/j.celrep.2020.108051

This article has been republished from the following materials. Note: material may have been edited for length and content. For further information, please contact the cited source.