We've updated our Privacy Policy to make it clearer how we use your personal data. We use cookies to provide you with a better experience. You can read our Cookie Policy here.

Advertisement
Sign up to read this article for FREE!

After signing up, you'll start to receive regular news updates from us.

High-Throughput Assay for the Identification of Compounds Regulating Osteogenic Differentiation of Human Mesenchymal Stromal Cells

Listen with
Speechify
0:00
Register for free to listen to this article
Thank you. Listen to this article using the player above.

Want to listen to this article for FREE?

Complete the form below to unlock access to ALL audio articles.

Read time: Less than a minute

Abstract
Human mesenchymal stromal cells are regarded as the golden standard for cell-based therapies. They present multilineage differentiation potential and trophic and immunosuppressive abilities, making them the best candidate for clinical applications. Several molecules have been described to increase bone formation and were mainly discovered by candidate approaches towards known signaling pathways controlling osteogenesis. However, their bone forming potential is still limited, making the search for novel molecules a necessity. High-throughput screening (HTS) not only allows the screening of a large number of diverse chemical compounds, but also allows the discovery of unexpected signaling pathways and molecular mechanisms for a certain application, even without the prior knowledge of the full molecular pathway. Typically HTS is performed in cell lines, however, in this manuscript we have performed a phenotypical screen on more clinically relevant human mesenchymal stromal cells, as a proof of principle that HTS can be performed in those cells and can be used to find small molecules that impact stem cell fate. From a library of pharmacologically active small molecules, we were able to identify novel compounds with increased osteogenic activity. These compounds allowed achieving levels of bone-specific alkaline phosphatase higher than any other combination previously known. By combining biochemical techniques, we were able to demonstrate that a medium to high-throughput phenotypic assay can be performed in academic research laboratories allowing the discovery of novel molecules able to enhance stem cell differentiation.

The article is published online in PLoS ONE and is free to access.