Hybridization of Testis-Derived Stem Cells with Somatic Cells and Embryonic Stem Cells in Mice
News Mar 27, 2012

Abstract
Somatic cell hybridization is widely used to study the control of gene regulation and the stability of differentiated states. In contrast, the application of this method to germ cells has been limited due, in part, to an inability to culture germ cells. In this study, we produced germ cell hybrids using germline stem (GS) cells and multipotent germline stem (mGS) cells. While GS cells are enriched for spermatogonial stem cell (SSC) activity, mGS cells are similar to embryonic stem (ES) cells and originally derived from GS cells. Hybrids were successfully obtained between GS cells and ES cells, between GS cells and mGS cells, and between mGS cells and thymocytes. All exhibited ES cell markers and a behavior similar to ES cells, formed teratomas and differentiated into somatic cell tissues. However, none of the hybrid cells were able to reconstitute spermatogenesis after microinjection into seminiferous tubules. Analyses of the DNA methylation patterns of imprinted genes also showed that mGS cells do not possess a DNA demethylation ability, which was found in embryonic germ cells derived from primordial germ cells. However, mGS cells reactivated the X chromosome and induced Pou5f1 expression in female thymocytes in a manner similar to ES cells. These data show that mGS cells possess ES-like reprogramming potential, which predominates over SSC activity.
This article is published online in Biology of Reproduction and is free to access.
RELATED ARTICLES
A human pluripotent stem cell line has been engineered which contains two ‘suicide genes’ that induce cell death in all but the desired insulin-producing cells. This double fail-safe approach opens the door to creating safe cell-replacement therapies for people living with type 1 diabetes.
READ MORETo personalize the content you see on Technology Networks homepage, Log In or Subscribe for Free
LOGIN SUBSCRIBE FOR FREE