We've updated our Privacy Policy to make it clearer how we use your personal data. We use cookies to provide you with a better experience. You can read our Cookie Policy here.

Advertisement

Hybridization of Testis-Derived Stem Cells with Somatic Cells and Embryonic Stem Cells in Mice

Listen with
Speechify
0:00
Register for free to listen to this article
Thank you. Listen to this article using the player above.

Want to listen to this article for FREE?

Complete the form below to unlock access to ALL audio articles.

Read time: Less than a minute

Abstract

Somatic cell hybridization is widely used to study the control of gene regulation and the stability of differentiated states. In contrast, the application of this method to germ cells has been limited due, in part, to an inability to culture germ cells. In this study, we produced germ cell hybrids using germline stem (GS) cells and multipotent germline stem (mGS) cells. While GS cells are enriched for spermatogonial stem cell (SSC) activity, mGS cells are similar to embryonic stem (ES) cells and originally derived from GS cells. Hybrids were successfully obtained between GS cells and ES cells, between GS cells and mGS cells, and between mGS cells and thymocytes. All exhibited ES cell markers and a behavior similar to ES cells, formed teratomas and differentiated into somatic cell tissues. However, none of the hybrid cells were able to reconstitute spermatogenesis after microinjection into seminiferous tubules. Analyses of the DNA methylation patterns of imprinted genes also showed that mGS cells do not possess a DNA demethylation ability, which was found in embryonic germ cells derived from primordial germ cells. However, mGS cells reactivated the X chromosome and induced Pou5f1 expression in female thymocytes in a manner similar to ES cells. These data show that mGS cells possess ES-like reprogramming potential, which predominates over SSC activity.

This article is published online in Biology of Reproduction and is free to access.