We've updated our Privacy Policy to make it clearer how we use your personal data.

We use cookies to provide you with a better experience. You can read our Cookie Policy here.

Advertisement

Model Developed To Explain How Cilia Beat

Credit: Pixabay

Want a FREE PDF version of This News Story?

Complete the form below and we will email you a PDF version of "Model Developed To Explain How Cilia Beat"

Technology Networks Ltd. needs the contact information you provide to us to contact you about our products and services. You may unsubscribe from these communications at any time. For information on how to unsubscribe, as well as our privacy practices and commitment to protecting your privacy, check out our Privacy Policy

Read time:
 

Cilia are tiny, hair-like structures on cells throughout our bodies that beat rhythmically to serve a variety of functions when they are working properly, including circulating cerebrospinal fluid in brains and transporting eggs in fallopian tubes.

Defective cilia can lead to disorders including situs inversus — a condition where a person’s organs develop on the side opposite of where they usually are.

Researchers know about many of cilia’s roles, but not exactly how they beat in the first place. This knowledge would be a step toward better understanding, and ultimately being able to treat, cilia-related diseases.

A team of McKelvey School of Engineering researchers at Washington University in St. Louis, led by Louis Woodhams, senior lecturer, and Philip V. Bayly, the Lee Hunter Distinguished Professor and chair of the Department of Mechanical Engineering & Materials Science, have developed a mathematical model of the cilium in which beating arises from a mechanical instability due to steady forces generated by the cilium motor protein, dynein.

Results of the research appeared on the cover of the August issue of Journal of the Royal Society Interface.

Bayly’s lab has been working with cilia as a model to study vibration, wave motion and instability in mechanical and biomedical systems. As intricate nanomachines in their own right, cilia could inspire similarly propelled machines that can do useful tasks on the tiniest scales, maybe even for chemical sensing or drug delivery in the human body.

The new model will allow the team to explore what happens when the motor protein exerts different forces, or when internal structures are more or less stiff, as a result of genetic or environmental factors.


Reference: Woodhams LG, Shen Y, Bayly PV. Generation of ciliary beating by steady dynein activity: the effects of inter-filament coupling in multi-filament models. J R Soc Interface. 19(192):20220264. doi: 10.1098/rsif.2022.0264


This article has been republished from the following materials. Note: material may have been edited for length and content. For further information, please contact the cited source.


Advertisement