We've updated our Privacy Policy to make it clearer how we use your personal data.

We use cookies to provide you with a better experience. You can read our Cookie Policy here.

Advertisement

Novel Method Accelerates the Immune Cell Production Pipeline

Credit: Pixabay

Want a FREE PDF version of This News Story?

Complete the form below and we will email you a PDF version of "Novel Method Accelerates the Immune Cell Production Pipeline"

First Name*
Last Name*
Email Address*
Country*
Company Type*
Job Function*
Would you like to receive further email communication from Technology Networks?

Technology Networks Ltd. needs the contact information you provide to us to contact you about our products and services. You may unsubscribe from these communications at any time. For information on how to unsubscribe, as well as our privacy practices and commitment to protecting your privacy, check out our Privacy Policy

Read time:
 

A University of British Columbia research team has developed a new, fast, efficient process for producing cancer-fighting immune cells in the lab. The discovery could help transform the field of immune cell therapy from an expensive, niche endeavour to something easily scalable and broadly applicable.

“We’ve figured out the minimal necessary steps to efficiently guide pluripotent stem cells to develop in the dish into immune cells, in particular, T cells,” said Dr. Yale Michaels, referring to the most essential cells of the human immune system. “One of the next steps we’re working on is to scale this up and make it work more efficiently so that we can make enough cells to treat patients.”

The breakthrough paper, published last week in Science Advances by Dr. Michaels, PhD student John Edgar, and a team from Dr. Peter Zandstra’s lab at UBC’s Michael Smith Laboratories and School of Biomedical Engineering, describes a novel method that is now the fastest known way to produce T cells in the lab.

T cells are instrumental in CAR T therapy, a well-known and successful cancer treatment that involves obtaining immune cells from the patient, genetically modifying them to fight against the patient’s cancer and infusing them back into the patient’s body to fight the disease. Although this type of therapy has an efficacy rate of close to 50 per cent for some cancers, a new batch of medicine needs to be created for each treatment, costing roughly half a million dollars each round.

“Because the main cost associated with these treatments is the fact that they’re made individually, a more cost-effective strategy could be figuring out how to manufacture those immune cells in the lab using stem cells, instead of taking them directly from a patient,” explains Michaels.

Pluripotent stem cells have the ability to differentiate into any type of cell in the human body and can endlessly renew themselves. Using PSCs to create immune cells in the lab for therapeutic treatments means hundreds of doses of a medicine could be derived from a single cell.

Building on a large body of previous work in the area, Michaels, Edgar and a team from the Zandstra lab discovered that providing two proteins to stem cells during a key window of development improved the efficiency of immune cell production by 80 times. By working strictly with the proteins DLL4 and VCAM1, instead of the animal cells and serums that complicated previous methods, the production process becomes a carefully controlled pipeline that is easy to replicate.

The improvement of this production pipeline is one step among many towards solving a variety of human health challenges. How to scale up a cell differentiation process, how to make cells good at killing cancer and fighting against other immune diseases, and how to deliver them to patients in a safe way are all important questions being explored simultaneously by the Zandstra lab and other research groups.

Dr. Michaels acknowledged that the collective work of thousands of people, each making important contributions, enabled this project to succeed.

"People have made tremendous progress over the last 20 years and this breakthrough is an exciting continuum,” he said.

The team hopes their new findings and ongoing work in the lab will contribute to future clinical pipelines.  


Reference: Michaels YS, Edgar JM, Major MC, et al. DLL4 and VCAM1 enhance the emergence of T cell–competent hematopoietic progenitors from human pluripotent stem cells. Sci Adv. 2022;8(34):eabn5522. doi: 10.1126/sciadv.abn5522


This article has been republished from the following materials. Note: material may have been edited for length and content. For further information, please contact the cited source.


Advertisement