We've updated our Privacy Policy to make it clearer how we use your personal data.

We use cookies to provide you with a better experience. You can read our Cookie Policy here.

Advertisement
Reproductive Traffic Cop Identified
News

Reproductive Traffic Cop Identified

Reproductive Traffic Cop Identified
News

Reproductive Traffic Cop Identified

Credit: Sarit Smolikove
Read time:
 

Want a FREE PDF version of This News Story?

Complete the form below and we will email you a PDF version of "Reproductive Traffic Cop Identified"

First Name*
Last Name*
Email Address*
Country*
Company Type*
Job Function*
Would you like to receive further email communication from Technology Networks?

Technology Networks Ltd. needs the contact information you provide to us to contact you about our products and services. You may unsubscribe from these communications at any time. For information on how to unsubscribe, as well as our privacy practices and commitment to protecting your privacy, check out our Privacy Policy

Before an egg becomes fertilized, sets of chromosomes must pair up to pass along genetic information. This happens within each reproductive cell, where separate chromosomes of male and female origin move toward each other and eventually join.


University of Iowa biologists have discovered a protein that appears to regulate the speed at which the female (maternal) and male (paternal) chromosome strands move and pair up. In laboratory tests, the researchers learned the protein acts like a brake on the chromosomes’ movement, especially the juncture at which the chromosomes join and share DNA, which is critical to an offspring’s successful inheritance of its parents’ genes.


The findings offer new insight into the intricate steps involved in animal fertility, from basic organisms all the way to humans. They also could help biologists better understand defects that occur in reproduction, including those that contribute to Down syndrome.


“To our knowledge, this is the first study to show the importance of negative regulation of chromosome movement…and pairing between homologous chromosomes,” writes Sarit Smolikove, associate professor in biology and the paper’s corresponding author. “This indicates that precise control of chromosome movement is imperative for the success of these processes.”


The researchers identified a protein in nematodes (a type of worm intensively studied by scientists) called FKB-6, which acts much like a traffic cop. FKB-6 instructs another protein, dynein, which by moving along filaments connected to each chromosome helps the pair journey toward each other. When the chromosome strands have joined, FKB-6 acts as a brake on dynein, slowing the process and ensuring the uninterrupted sharing of DNA.


“Chromosomes’ movement is important because you need to move them in synchronicity,” Smolikove says. “We’ve shown you don’t want to move them too much or too frequently. You need to give the strands time to join for cell division to be done correctly.”


Smolikove likens the process to a parent zipping a coat for a child. If the child is jerking about as the parent tries to zip the coat, it takes longer for the action to be completed; worse, the zipper could break, meaning the coat doesn’t get zipped at all. Likewise, the chromosome strands need to line up and have the time to “zip up,” so genetic information is accurately swapped.


“There should be a balance between moving and stopping,” Smolikove says, “and FKB-6 is the one that regulates those actions.”


The researchers screened some 200 proteins connected to meiosis (reproductive-cell division) in nematodes as they tried to determine which ones were most involved in chromosome movement, especially at the fusing stage. They determined FKB-6’s role when they canceled its function, causing the chromosome pairing to go somewhat haywire: The mutant chromosomes paused less, changed directions more, and traveled greater distances than ones with the FKB-6 protein.


Moreover, cells in worms without FKB-6 failed to properly perform mitosis (a later stage in reproduction when a cell forms two new nuclei with the same number of chromosomes as the parent nucleus), causing a high proportion of embryo defects, the researchers found.


Humans have a similar protein, FKBP52, which also is closely involved with stabilizing the filaments that connect chromosomes. Further testing would be needed to more precisely establish FKBP52’s role in human reproduction.


Benjamin Alleva, a graduate student in the department’s Integrated Biology Graduate Program, is the paper’s first author. Contributing authors include Nathan Balukoff and Amy Peiper, both of whom worked as undergraduates in Smolikove’s lab.


The National Science Foundation funded the research through a three-year, $555,000 grant to Smolikove.


Reference:

Alleva, B., Balukoff, N., Peiper, A., & Smolikove, S. (2017). Regulating chromosomal movement by the cochaperone FKB-6 ensures timely pairing and synapsis. The Journal of Cell Biology. doi:10.1083/jcb.201606126


This article has been republished from materials provided by the University of Iowa. Note: material may have been edited for length and content. For further information, please contact the cited source.

Advertisement