We've updated our Privacy Policy to make it clearer how we use your personal data. We use cookies to provide you with a better experience. You can read our Cookie Policy here.


Researchers Design Programmable DNA Hydrogels for Advanced Cell Culture

Cell culture.
Credit: iStock.
Listen with
Register for free to listen to this article
Thank you. Listen to this article using the player above.

Want to listen to this article for FREE?

Complete the form below to unlock access to ALL audio articles.

Read time: 1 minute

In-vitro culture of biological cells plays an important role in advancing biological research. However, currently available cell culture materials have significant drawbacks. Many of them are derived from animal sources, leading to poor reproducibility, and making it difficult to fine-tune their mechanical properties. Therefore, there is an urgent need for new approaches to create soft and biocompatible materials with predictable properties.

Want more breaking news?

Subscribe to Technology Networks’ daily newsletter, delivering breaking science news straight to your inbox every day.

Subscribe for FREE
The team of Dr. Elisha Krieg at the Leibniz Institute of Polymer Research Dresden has developed a dynamic DNA-crosslinked matrix (DyNAtrix) by combining classical synthetic polymers with programmable DNA crosslinkers. DNA’s highly specific and predictable binding gives researchers unparalleled control over key mechanical properties of the material. Published in Nature Nanotechnology on August 7, their research shows how DyNAtrix enables systematic control over its viscoelastic, thermodynamic, and kinetic characteristics by simply changing the DNA sequence information. The predictable stability of DNA crosslinks allows the stress-relaxation properties to be rationally tuned, mimicking the characteristics of living tissues. DyNAtrix is self-healing, printable, and exhibits high stability and controllable degradation. Cell culture with human mesenchymal stromal cells, pluripotent stem cells, canine kidney cysts, and human trophoblast organoids demonstrate the high biocompatibility of the materials.

The programmable properties of the material point to promising potential for new applications in tissue culture. The ongoing studies focus on the effect of viscoelastic properties on cell and organoid development. In the future, DyNAtrix can be used in basic research and personalized medicine, for example, to reproduce and investigate patient-derived tissue models in the laboratory.

Reference: Peng YH, Hsiao SK, Gupta K, et al. Dynamic matrices with DNA-encoded viscoelasticity for cell and organoid culture. Nat Nanotechnol. 2023. doi: 10.1038/s41565-023-01483-3

This article has been republished from the following materials. Note: material may have been edited for length and content. For further information, please contact the cited source.