We've updated our Privacy Policy to make it clearer how we use your personal data. We use cookies to provide you with a better experience. You can read our Cookie Policy here.

Advertisement
Sign up to read this article for FREE!

After signing up, you'll start to receive regular news updates from us.

Stabilizing the Code-Methods to Preserve RNA Prove their Worth

Listen with
Speechify
0:00
Register for free to listen to this article
Thank you. Listen to this article using the player above.

Want to listen to this article for FREE?

Complete the form below to unlock access to ALL audio articles.

Read time: Less than a minute

Abstract

Commercially available platforms to stabilize messenger RNA (mRNA) and microRNA are critically designed to optimize and ensure the quality and integrity of those nucleic acids. This is not only essential for gene expression analyses, but would provide technical utility in providing concordant standard operating procedures in preserving the structural integrity of RNA species in multicenter clinical research programs and biobanking of cells or tissues for subsequent isolation of intact RNA. The major challenge is that the presence of degraded samples may adversely influence the interpretation of expression levels on isolated mRNA or microRNA samples and that in the absence of a concordant operating procedure between multiple collaborating research centers would confound data analysis and interpretation. However, in this issue of Biomarker Insights, Weber et al provide a detailed and critical analysis of two common RNA preservation systems, PAXgene and RNAlater. Such studies are lacking in the literature. However, the authors provide compelling evidence that not all conservation platforms are created equal and only one system proves its worth.

The article is published online in Biomarker Insights and is free to access.