Reinventing Molecular Messaging
According to Luan, understanding the intricate molecular processes of fertilization may help improve the commercial yields in flowering plants. Other researchers or plant geneticists might use the findings to break the interspecies barrier, potentially opening the door to the creation of new hybrid crop species through cross-pollination.
But, in addition to the potential commercial application, these findings further highlight plants’ miraculous ability to communicate via molecular emissions. “From an evolutionary point of view, plants reinvented their own molecules specific to their unique communication process,” he added.
The calcium channels identified in this study are unique to plants, suggesting they invented a way to produce signals that are different than those found in animals. Luan said researchers have studied calcium channels for more than 30 years, uncovering how they confer resistance to powdery mildew (a fungal disease that affects a wide variety of plants) or enable mechanical sensing in root systems.
Their biochemical role remained unknown until this study uncovered the specific channel activity. “Reinventing new channels to communicate in their own way, consistent with different lifestyles of plants and animals, is of general importance to biology,” Luan said.
Reference: Gao Q, Wang C, Xi Y, Shao Q, Li L, Luan S. A receptor–channel trio conducts Ca2+ signalling for pollen tube reception. Nature. 2022:1-6. doi: 10.1038/s41586-022-04923-7
This article has been republished from the following materials. Note: material may have been edited for length and content. For further information, please contact the cited source.