T-Cell Discovery Has Potential for Engineering Custom Immune Responses
Until now, understanding how a T cell forms into a specific role has eluded us.
Complete the form below to unlock access to ALL audio articles.
T cells are soldiers on the front lines of the human immune system. They are responsible for many important roles, including attacking viral- or bacterial-infected cells and certain cancer cells, and immunological memory – remembering the specific pathogens or the cancer signatures that originally trigger T cells.
Until now, understanding how a T cell forms into a specific role, for example a cell-killing (cytotoxic) T cell or memory T cell, has eluded us. In a just-published paper in Cell Reports, ISB researchers made the breakthrough discovery that the genetically encoded T-cell receptor (TCR) sequence that humans develop in early childhood determines a T cell’s function.
“That receptor sequence is the major determinant – not signaling proteins such as cytokines or other blood components,” said Daniel Chen, first author of the paper. “It is that receptor sequence – the proteins on the T cell that bind to foreign antigens – that determines what this cell’s phenotype is, and thus determines what its function is going to be.”
Want more breaking news?
Subscribe to Technology Networks’ daily newsletter, delivering breaking science news straight to your inbox every day.
Subscribe for FREEIn a human clinical study involving 68 patients, the team explored around 700 T cells that specifically interacted with antigens from either SARS-CoV-2, influenza, or cytomegalovirus.
The potential of this fundamental discovery is promising for developing custom immune responses to specific antigens.
“T-cell receptor-engineered T cell cancer immunotherapies are an emerging treatment for solid tumors. In such therapies, the T cells that comprise the drug are typically engineered to aggressively kill cancer cells. We know that a successful immune response requires a balance of T cell phenotypes, some of which kill tumor cells, but others which can form memory or do other functions,” said ISB President and Professor Dr. Jim Heath, corresponding author of the paper.
“We show that there is basically a card catalog available. If you want to engineer a balanced immune response, you go to that card catalog, you find the particular TCR genes that, when engineered to build the cell therapy, can provide that balanced response,” Heath added.
Importantly, a different “card catalog” is required for different antigens. However, many antigens are immunogenic. This means that for different patients afflicted with the same disease, their T cells will often target the same antigen.
“This is important,” said Chen, “because it means that what we learn for one patient is likely going to be applicable for another.”
Reference: Chen DG, Xie J, Su Y, Heath JR. T cell receptor sequences are the dominant factor contributing to the phenotype of CD8+ T cells with specificities against immunogenic viral antigens. Cell Reports. 2023:113279. doi: 10.1016/j.celrep.2023.113279
This article has been republished from the following materials. Note: material may have been edited for length and content. For further information, please contact the cited source.