We've updated our Privacy Policy to make it clearer how we use your personal data. We use cookies to provide you with a better experience. You can read our Cookie Policy here.

Advertisement

What Came First the Chicken or the Egg? An Ancient Unicellular Indicates It Was the Egg

A microscope image of Chromosphaera perkinsii as it develops into a multicellular organism.
Images of the multicellular development of the ichthyosporean Chromosphaera perkinsii, a close cousin of animals. In red, the membranes and in blue the nuclei with their DNA. The image was obtained using expansion microscopy. Credit: O. Dudin/ UNIGE
Listen with
Speechify
0:00
Register for free to listen to this article
Thank you. Listen to this article using the player above.

Want to listen to this article for FREE?

Complete the form below to unlock access to ALL audio articles.

Read time: 2 minutes

Chromosphaera perkinsii is a single-celled species discovered in 2017 in marine sediments around Hawaii. The first signs of its presence on Earth have been dated at over a billion years, well before the appearance of the first animals. A team from the University of Geneva (UNIGE) has observed that this species forms multicellular structures that bear striking similarities to animal embryos. These observations suggest that the genetic programs responsible for embryonic development were already present before the emergence of animal life, or that C. perkinsii evolved independently to develop similar processes. Nature would therefore have possessed the genetic tools to “create eggs” long before it “invented chickens”. This study is published in the journal Nature.


The first life forms to appear on Earth were unicellular, i.e. composed of a single cell, such as yeast or bacteria. Later, animals - multicellular organisms - evolved, developing from a single cell, the egg cell, to form complex beings. This embryonic development follows precise stages that are remarkably similar between animal species and could date back to a period well before the appearance of animals. However, the transition from unicellular species to multicellular organisms is still very poorly understood.


These cells divide without growing any further, forming multicellular colonies resembling the early stages of animal embryonic development.


Recently appointed as an assistant professor at the Department of Biochemistry in the UNIGE Faculty of Science, and formerly an SNSF Ambizione researcher at EPFL, Omaya Dudin and his team have focused on Chromosphaera perkinsii, or C. perkinsii, an ancestral species of protist. This unicellular organism separated from the animal evolutionary line more than a billion years ago, offering valuable insight into the mechanisms that may have led to the transition to multicellularity.

Want more breaking news?

Subscribe to Technology Networks’ daily newsletter, delivering breaking science news straight to your inbox every day.

Subscribe for FREE

By observing C. perkinsii, the scientists discovered that these cells, once they have reached their maximum size, divide without growing any further, forming multicellular colonies resembling the early stages of animal embryonic development. Unprecedentedly, these colonies persist for around a third of their life cycle and comprise at least two distinct cell types, a surprising phenomenon for this type of organism.


‘‘Although C. perkinsii is a unicellular species, this behaviour shows that multicellular coordination and differentiation processes are already present in the species, well before the first animals appeared on Earth’’, explains Omaya Dudin, who led this research.


Even more surprisingly, the way these cells divide and the three-dimensional structure they adopt are strikingly reminiscent of the early stages of embryonic development in animals. In collaboration with Dr John Burns (Bigelow Laboratory for Ocean Sciences), analysis of the genetic activity within these colonies revealed intriguing similarities with that observed in animal embryos, suggesting that the genetic programmes governing complex multicellular development were already present over a billion years ago.


Marine Olivetta, laboratory technician at the Department of Biochemistry in the UNIGE Faculty of Science and first author of the study, explains: “It’s fascinating, a species discovered very recently allows us to go back in time more than a billion years”. In fact, the study shows that either the principle of embryonic development existed before animals, or multicellular development mechanisms evolved separately in C. perkinsii.


This discovery could also shed new light on a long-standing scientific debate concerning 600 million-year-old fossils that resemble embryos, and could challenge certain traditional conceptions of multicellularity.


Reference: Olivetta M, Bhickta C, Chiaruttini N, Burns J, Dudin O. A multicellular developmental program in a close animal relative. Nature. 2024. doi: 10.1038/s41586-024-08115-3


This article has been republished from the following materials. Note: material may have been edited for length and content. For further information, please contact the cited source. Our press release publishing policy can be accessed here.