We've updated our Privacy Policy to make it clearer how we use your personal data. We use cookies to provide you with a better experience. You can read our Cookie Policy here.

Advertisement

Defined and Controllable Extracellular Matrix for Cell Culture

Defined and Controllable Extracellular Matrix for Cell Culture content piece image
Listen with
Speechify
0:00
Register for free to listen to this article
Thank you. Listen to this article using the player above.

Want to listen to this article for FREE?

Complete the form below to unlock access to ALL audio articles.

Read time: Less than a minute

Biochemically defined and animal-free - Mussel Adhesive Protein based matrix (MAPtrix™) from AMSBIO provides a highly defined and controllable recombinant extracellular matrix (ECM) for cell culture, which can be tailored to the specific needs of particular cell types.

Low cost and ready-to-use - MAPtrix™ produces a reliable and reproducible protein coating on a wide variety of surfaces including glass, plastic and biological surfaces. Used as a replacement for traditional basement membrane extracts in drug delivery, surface-modified medical device, stem cell and tissue engineering scaffold applications - MAPtrix™ delivers superior cell plating efficiency, improved cell morphology and enhanced cell proliferation.

Mussel Adhesive Protein is a highly desirable substrate for use in a variety of biological and medical applications because of its strong wet adhesive, non-toxic, biodegradable and low immunogenic properties.

MAPtrix™ technology works by incorporating small individual motifs from ECM proteins into recombinant proteins with a backbone of Mussel Adhesive Protein to attach to the substrate, thereby presenting the ECM motif for cultured cells to attach to. Incorporating mix-and-match genetically incorporated bioactive peptides - MAPtrix™ provides an in-vivo-like surface structure, that mimics the native extracellular environment, enabling the maintenance of cells under serum and feeder-free conditions.

AMSBIO also offer MAPtrix™ Screen arrays to help scientists to screen a range of ECM motifs to find which ones their cells will adhere to. They can then use these motifs to tailor a defined microenvironment in 2D, or combine the MAPtrix biomimetic with a Polyethylene glycol (PEG) crosslinker to form a hydrogel (MAPtrix™ Hygel) for 3D cell culture.