Scale Bio Draws Nearly 1 Billion Cells in Global Health and Disease Research Challenge
Complete the form below to unlock access to ALL audio articles.
In an exciting moment for genomics research, Scale Biosciences (Scale Bio) announced today the winning projects of the 100 Million Cell Challenge representing more than a dozen projects addressing critical challenges in global health — from childhood respiratory diseases to cancer disparities. These projects, chosen from 147 proposals submitted across 27 countries, represent a total of 50 million cells and will be fully subsidized by the Chan Zuckerberg Initiative (CZI). The selected projects span a remarkable range of applications, from expanding the first global atlas of pediatric health to investigating population-specific differences in cancer outcomes. Collectively, they demonstrate how increased scale in single cell analysis can transform our understanding of human biology and disease.
The overwhelming response from the scientific community—with submitted projects totaling nearly one billion cells—demonstrates the tremendous demand for accessible, large-scale single cell analysis. In recognition of this unprecedented interest and the high quality of submissions, Scale Bio will expand the program to enable support for all eligible researchers, representing more than 600 million cells of submitted projects.
Want more breaking news?
Subscribe to Technology Networks’ daily newsletter, delivering breaking science news straight to your inbox every day.
Subscribe for FREEThe 100 Million Cell Challenge reflected unprecedented industry collaboration between Scale Bio, CZI, Ultima Genomics, NVIDIA and Bioturing, a new partner. To support this ambitious initiative, BioTuring will offer all participating researchers complimentary access to their advanced analysis platform, BBrowserX, empowering the researchers with cutting-edge tools and accelerating their path to scientific insights.
"The overwhelming success of this program in attracting a diverse array of projects totaling nearly a billion cells is a testament to the pent-up demand for single cell omics solutions, and the opportunity to unlock new insights when technical and cost barriers are removed," said Giovanna Prout, President and CEO of Scale Bio. "When researchers can analyze millions of cells instead of thousands, we unlock entirely new possibilities for understanding human health and disease. With Scale Bio’s innovative QuantumScale workflow and ScalePlex multiplexing technology, we are enabling many more researchers to tackle single cell omics research projects at unprecedented scale.”
The 100 Million Cell Challenge is possible due to Scale Bio’s dual innovations: QuantumScale, a single cell RNA sequencing technology, and ScalePlex, a novel multiplexing technology that enables seamless sample pooling. Together, these technologies enable researchers to multiplex samples and prepare up to 2 million cells in parallel at a breakthrough price point of 1 cent per cell. The purpose-built innovations are designed for simplicity, flexibility and quality, with a clear multiplexing and single cell protocol that can be done with standard laboratory equipment and limited technician training.
"The scale of these single cell omics projects will enhance Chan Zuckerberg CELL by GENE Discover – a platform CZI built where scientists can explore curated cellular data and discover new information – making it an even more powerful resource for the global research community," said Jonah Cool, Cell Science Senior Program Officer at CZI. "Each cell analyzed brings us closer to understanding diverse populations, complex diseases and how to develop more effective treatments." Data from the winning projects will be made openly available on CZ CELLxGENE Discover and will accelerate modeling efforts including CZI’s commitment to build AI-powered virtual cell models, capable of predicting the behavior of healthy and diseased cells.
"It's inspiring to see the science that can be enabled by pushing the scale of single cell studies to many millions of cells," said Gilad Almogy, CEO of Ultima Genomics. "We are excited to continue to support the 100 Million Cell Challenge as it expands to enable even more researchers across the globe."
"The ability to extract information for projects of this size requires computational resources that scale efficiently," noted George Vacek, Global Head of Genomics Alliances at NVIDIA. "Analysis at scale powered by NVIDIA technology will help transform this incredible data into actionable scientific insights."