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Fluorescence microscopy is one of the most widely used assays in biological Fluorophores modeled as random In order to validate our Markov model, we undertook the most extensive and We know cancer cells contain
sy.stems. Hc?wever, the technique suffer§ from limited multiplexing capability variables with predefined systematic survey of FRET networks to date. _ _ _ aberrant DNA/RNA secondary
V\flth previous  attempts  at detecting more than - f.Iuorophorfes probabilities of transfer - — . : Change in signhature with sensor structure in the regulatory
simultaneously resulting in barcodes that are too big for in vivo analysis, Transfer rate given by Forster’s 10 -E i ey conelaton 1 We deliberately introduced mi - regions of some genes. The
expensive and involve time-consuming detection schemes. Here, we introduce equation: : toea s(ienl Izr:;ix;':ltr& ucemon\:i':“;e variations ERET network self-assembled
DNA self-assemblfed FRET.networks that provide a unique, optical ou.tput when k; (r) = 1/1, . (Ro/r)® g 08 - 1 fluore iore ov 1nm o'rgl.:; intercghan - to the target structure results
probed by a series of light pulses. Markov and entropy modeling of the where, Ro is the Forster radius, T | | o P dy . ) Yh . ging in a different optical signal
nanoscale FRET sensors show that 125 fluorophores can be observed ;r:S the disttance between the donor 5 06F - 5;:;:;1'.15) and observed the change in based on the presence of the
simultaneously. Furthermore, experimental analyses of over 1200 time- € acceptaf, @ : i
Y . ’ P .y Tp is native lifetime of the donor. 8 04l 1 -High reproducibilitv: Responses from wild type or the aberrant
resolved fluorescence signatures on 300 prototypical networks show that the v . . c 0 ghrep y- heésp d truct H
: \ _ o Fluorescence is the absorbing state 2 identical networks were 99.48% secondary structure. fere, BRCA2, BRCA2,
optical responses are repeatable 99.48% of the time and that minor variations . 3 _ 7D we identify breast and lung 10N CANCEroUs CANCEroUs
between FRET networks can be discriminated resulting in a total of 1037 H e of the Mark del. below. show that add e ] ©ozr ] rsprodUC|ble, fro.rE 1200 expggrgggts. cancer cells with high G allele ' Aallele
unique responses. This enormous increase in spatial information density e results of the arkovmodel, below, s ow that adding a single vorophore : ] ornque outputs: From over 65, - specificity and repeatability
to a network, changing the position of a fluorophore by a few nm or changing 0.0 comparisons, the number of collisions '

enabled by FRET networks allowed us to identify molecular signatures in lung
and breast cancer tumors.
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