We've updated our Privacy Policy to make it clearer how we use your personal data.

We use cookies to provide you with a better experience. You can read our Cookie Policy here.

Advertisement
Compact CRISPR System Enables Portable COVID-19 Testing
News

Compact CRISPR System Enables Portable COVID-19 Testing

Compact CRISPR System Enables Portable COVID-19 Testing
News

Compact CRISPR System Enables Portable COVID-19 Testing

Credit: Masum Ali/ Pixabay
Read time:
 

Want a FREE PDF version of This News Story?

Complete the form below and we will email you a PDF version of "Compact CRISPR System Enables Portable COVID-19 Testing"

First Name*
Last Name*
Email Address*
Country*
Company Type*
Job Function*
Would you like to receive further email communication from Technology Networks?

Technology Networks Ltd. needs the contact information you provide to us to contact you about our products and services. You may unsubscribe from these communications at any time. For information on how to unsubscribe, as well as our privacy practices and commitment to protecting your privacy, check out our Privacy Policy

A new form of CRISPR technology that takes advantage of a compact RNA-editing protein could lead to improved diagnostic tests for COVID-19.

The platform, developed by bioengineer Magdy Mahfouz and his KAUST colleagues, relies on a miniature form of the Cas13 protein that some microbes use to defend themselves from viruses. This RNA-cutting enzyme can be designed to cleave any target sequence, including parts of the genome from SARS-CoV-2, the novel coronavirus responsible for the COVID-19 pandemic.

By pairing the Cas13 system with a simple nucleic acid amplification method, a handheld optical reader and a smartphone, the researchers created a low-cost, point-of-care test that could accurately diagnose COVID-19 from throat and nose swab samples taken from patients.

The approach proved reliable and accurate with a fast turnaround time, from clinical sampling to a diagnostic result in just a few hours. “Our modality demonstrates several key features, including simplicity, specificity, sensitivity and portability,” Mahfouz says.

A COVID-19 test represents just one potential application of the technology. Other diagnostic or therapeutic uses could soon follow, explains Ahmed Mahas, a Ph.D. student in Mahfouz’s lab.

“We aim to develop next-generation sensors that can be applied for the detection of nucleic acids as well as other molecules, such as environmental molecules,” says Mahas, the first author of the journal article that describes the diagnostic assay.

The miniature Cas13 system may also be useful as an antiviral therapeutic. The compact nature of the new Cas13 protein makes it easier to package the gene-editing machinery into a viral vector, the standard method for transferring CRISPR components into human cells. Once inside cells, the system could be used therapeutically to alter the expression of disease-associated genes or to destroy pathogens such as the influenza virus.

What’s more, “the small size of this novel protein allows for simple protein engineering,” Mahas says. And with further molecular tweaks, the KAUST team aims to expand the toolkit of potential Cas13-related applications.

Mahfouz and his colleagues have filed a patent application connected to their CRISPR-Cas13 system. To refine their diagnostic method, they have also continued their search for novel Cas13 proteins. “This work demonstrates that bacterial defense systems have untapped potential for diverse synthetic biology applications,” says Mahfouz.

Reference: Mahas A, Wang Q, Marsic T, Mahfouz MM. A novel miniature CRISPR-Cas13 system for SARS-CoV-2 diagnostics. ACS Synth Biol. 2021;10(10):2541-2551. doi: 10.1021/acssynbio.1c00181

This article has been republished from the following materials. Note: material may have been edited for length and content. For further information, please contact the cited source.

 
Advertisement