We've updated our Privacy Policy to make it clearer how we use your personal data.

We use cookies to provide you with a better experience. You can read our Cookie Policy here.

Advertisement

DNA Droplets Offer Novel Method for Early Disease Detection

Credit: Gerd Altmann/ Pixabay

Want a FREE PDF version of This News Story?

Complete the form below and we will email you a PDF version of "DNA Droplets Offer Novel Method for Early Disease Detection"

Technology Networks Ltd. needs the contact information you provide to us to contact you about our products and services. You may unsubscribe from these communications at any time. For information on how to unsubscribe, as well as our privacy practices and commitment to protecting your privacy, check out our Privacy Policy

Read time:
 

Aqueous droplet formation by liquid-liquid phase separation (or coacervation) in macromolecules is a hot topic in life sciences research. Of these various macromolecules that form droplets, DNA is quite interesting because it is predictable and programmable, which are qualities useful in nanotechnology. Recently, the programmability of DNA was used to construct and regulate DNA droplets formed by coacervation of sequence designed DNAs.


Developing this DNA droplet required a series of experiments. First, they designed three types of Y-shaped DNA nanostructures called Y-motifs A, B, and C with 3 sticky ends to make A, B, and C DNA droplets. Typically, similar droplets band together automatically while to join dissimilar droplets a special "linker" molecule required. So, they used linker molecules to join the A droplet with B and C droplet; these linker molecules were called AB and AC linkers, respectively.


In their first experiment they evaluated the "AND" operation in the AB droplet mixture by introducing 2 input DNAs. In this operation, the presence of input is recorded as 1 while its absence is recorded as 0. The phase separation of AB droplet mixture occurred only at (1,1), meaning when both input DNAs are present, suggesting successful application of AND operation. Following this study, the scientists decided to introduce breast cancer tumor markers, miRNA-1 and miRNA-2, to AC droplet mixture as inputs for the AND operation. The AND operation was successful implying that the computational DNA droplet identified the miRNAs.


In subsequent experiments, the team demonstrated simultaneous AND as well as NOT operations in AB mixture with miRNA-3 and miRNA-4 breast cancer biomarkers. Lastly, they created an ABC droplet mixture and introduced all the 4 breast cancer biomarkers to this solution. The phase separation in ABC droplet depended on the linker cleavage resulting in a two-phase separation or a three-phase separation.


This property of ABC droplet enabled the researchers to demonstrate the ability to detect a set of known cancer biomarkers or detect markers of 3 diseases simultaneously. Prof. Takinoue, who is also the corresponding author, sees a huge potential for computational DNA droplets. According to him, "If a DNA droplet can be developed which can integrate and process multiple inputs and outputs, we can use it in early disease detection as well as drug delivery systems. Our current study also acts as a steppingstone for research in developing intelligent artificial cells and molecular robots."


Reference: Gong J, Tsumura N, Sato Y, Takinoue M. Computational DNA droplets recognizing miRNA sequence inputs based on liquid–liquid phase separation.  Adv. Funct. Mater. 2022:2202322. doi: 10.1002/adfm.202202322


This article has been republished from the following materials. Note: material may have been edited for length and content. For further information, please contact the cited source.

 
Advertisement