We've updated our Privacy Policy to make it clearer how we use your personal data.

We use cookies to provide you with a better experience. You can read our Cookie Policy here.

Advertisement
Identifying Functional Biomarkers of Traumatic Brain Injury
News

Identifying Functional Biomarkers of Traumatic Brain Injury

Identifying Functional Biomarkers of Traumatic Brain Injury
News

Identifying Functional Biomarkers of Traumatic Brain Injury

Read time:
 

Want a FREE PDF version of This News Story?

Complete the form below and we will email you a PDF version of "Identifying Functional Biomarkers of Traumatic Brain Injury"

First Name*
Last Name*
Email Address*
Country*
Company Type*
Job Function*
Would you like to receive further email communication from Technology Networks?

Technology Networks Ltd. needs the contact information you provide to us to contact you about our products and services. You may unsubscribe from these communications at any time. For information on how to unsubscribe, as well as our privacy practices and commitment to protecting your privacy, check out our Privacy Policy

Abstract

Background:

We have explored the potential prefrontal hemodynamic biomarkers to characterize subjects with Traumatic Brain Injury (TBI) by employing the multivariate machine learning approach and introducing a novel task-related hemodynamic response detection followed by a heuristic search for optimum set of hemodynamic features. To achieve this goal, the hemodynamic response from a group of 31 healthy controls and 30 chronic TBI subjects were recorded as they performed a complexity task.

Methods:

To determine the optimum hemodynamic features, we considered 11 features and their combinations in characterizing TBI subjects. We investigated the significance of the features by utilizing a machine learning classification algorithm to score all the possible combinations of features according to their predictive power.

Results & Conclusions:

The identified optimum feature elements resulted in classification accuracy, sensitivity, and specificity of 85%, 85%, and 84%, respectively. Classification improvement was achieved for TBI subject classification through feature combination. It signified the major advantage of the multivariate analysis over the commonly used univariate analysis suggesting that the features that are individually irrelevant in characterizing the data may become relevant when used in combination. We also conducted a spatio-temporal classification to identify regions within the prefrontal cortex (PFC) that contribute in distinguishing between TBI and healthy subjects. As expected, Brodmann areas (BA) 10 within the PFC were isolated as the region that healthy subjects (unlike subjects with TBI), showed major hemodynamic activity in response to the High Complexity task. Overall, our results indicate that identified temporal and spatio-temporal features from PFC's hemodynamic activity are promising biomarkers in classifying subjects with TBI.

Reference: 

Karamzadeh, N., Amyot, F., Kenney, K., Anderson, A., Chowdhry, F., Dashtestani, H., . . . Gandjbakhche, A. H. (2016). A machine learning approach to identify functional biomarkers in human prefrontal cortex for individuals with traumatic brain injury using functional near-infrared spectroscopy. Brain and Behavior, 6(11). doi:10.1002/brb3.541

Advertisement