We've updated our Privacy Policy to make it clearer how we use your personal data.

We use cookies to provide you with a better experience. You can read our Cookie Policy here.

Advertisement
New Diagnostic Method Finds Aggressive Tumours
News

New Diagnostic Method Finds Aggressive Tumours

New Diagnostic Method Finds Aggressive Tumours
News

New Diagnostic Method Finds Aggressive Tumours

Credit: Pixabay
Read time:
 

Want a FREE PDF version of This News Story?

Complete the form below and we will email you a PDF version of "New Diagnostic Method Finds Aggressive Tumours"

First Name*
Last Name*
Email Address*
Country*
Company Type*
Job Function*
Would you like to receive further email communication from Technology Networks?

Technology Networks Ltd. needs the contact information you provide to us to contact you about our products and services. You may unsubscribe from these communications at any time. For information on how to unsubscribe, as well as our privacy practices and commitment to protecting your privacy, check out our Privacy Policy

Researchers at Karolinska Institutet in Sweden have developed a new cheap method that can identify highly heterogeneous tumours that tend to be very aggressive, and therefore need to be treated more aggressively.

A common feature of cancer cells is alterations in the number of copies in which each chromosome or gene is present in the genome - a phenomenon known as copy number alterations or CNAs. Within the same tumour, cells belonging to different anatomical parts of the tumour may carry different CNAs. Tumours with many CNAs are typically very aggressive and tend to reform more often, even after harsh treatments.

Now, the Bienko-Crosetto Laboratory at Karolinska Institutet and Science for Life Laboratory (SciLifeLab) in Sweden have developed a new genomic method, named CUTseq, which can assess the amount and type of CNAs in many different parts of the same tumour, at a much lower cost than existing technologies.

"I expect that CUTseq will find many useful applications in cancer diagnostics," says Nicola Crosetto, senior researcher at the Department of Medical Biochemistry and Biophysics, Karolinska Institutet, and one of the senior authors of the paper. "Multi-region tumour sequencing is going to be increasingly used in the diagnostic setting, in order to identify patients with highly heterogeneous tumours that need to be treated more aggressively. I believe that our method can play a leading role here."

The method works with DNA extracted from multiple biopsies and even from very small portions of thin tissue sections - the type of sample that pathologists commonly rely on to make a diagnosis of cancer under the microscope.

By tagging the DNA extracted from multiple regions of the same tumour sample with unique molecular barcodes, a comprehensive picture of the heterogeneity of CNAs in a tumour can be obtained with a single sequencing experiment.

Applications of CUTseq are not only limited to cancer diagnostics, according to the researchers behind the new method.

"For example, CUTseq could be used as a platform for cell line authentication and to monitor genome stability in large cell line repositories and biobanks," says Magda Bienko, senior researcher at the same department and the other senior author of the paper. "It could also be applied in ecology, as an alternative to other reduced representation genome sequencing methods, such as RAD-seq, to assess biodiversity in a cost-effective way."

Reference: Zhang, X., Garnerone, S., Simonetti, M., Harbers, L., Nicoś, M., Mirzazadeh, R., … Crosetto, N. (2019). CUTseq is a versatile method for preparing multiplexed DNA sequencing libraries from low-input samples. Nature Communications, 10(1). https://doi.org/10.1038/s41467-019-12570-2 

This article has been republished from the following materials. Note: material may have been edited for length and content. For further information, please contact the cited source.

Advertisement