We've updated our Privacy Policy to make it clearer how we use your personal data.

We use cookies to provide you with a better experience. You can read our Cookie Policy here.

Advertisement
Observing Molecules in Super-Fridge
News

Observing Molecules in Super-Fridge

Observing Molecules in Super-Fridge
News

Observing Molecules in Super-Fridge

Read time:
 

Want a FREE PDF version of This News Story?

Complete the form below and we will email you a PDF version of "Observing Molecules in Super-Fridge "

First Name*
Last Name*
Email Address*
Country*
Company Type*
Job Function*
Would you like to receive further email communication from Technology Networks?

Technology Networks Ltd. needs the contact information you provide to us to contact you about our products and services. You may unsubscribe from these communications at any time. For information on how to unsubscribe, as well as our privacy practices and commitment to protecting your privacy, check out our Privacy Policy

An international team of researchers led by the University of Leicester has for the first time observed how a single two-atom-large molecule rotates in the coldest liquid known in nature.

The team consists of researchers from the Department of Physics and Astronomy at the University of Leicester, the Centre National de la Recherche Scientifique (CNRS), Grenoble, France and the Department of Physics in Kerbala, Iraq.

The interactions of molecules in liquids determines chemical reactions and biological processes.

In ordinary liquids, the interactions between the molecules is too strong and overshadows the subtle features of rotations.

By choosing a very special liquid composed of helium atoms the researchers reduced the strength of the molecular interactions so that they had the chance to see single molecules rotating.

Lead author Dr Klaus von Haeften from the University of Leicester Department of Physics and Astronomy said: “To introduce molecules into the liquid helium we had to excite the helium using a discharge. 

“This was necessary because ordinary molecules would freeze once they are introduced into liquid helium. By exciting helium in the discharge tiny gas bubbles were formed.”

The researchers observed that by applying pressure the molecules within these bubbles would collide with the ultra-cold liquid and begin to cool and slow down their rotations.

This happened at a rate of more than 100 billion degrees Kelvin per second. At pressures of several atmospheres the molecules reached the slowest possible rotational speed.

The researchers believe that with these molecules they can investigate liquid helium at even lower temperatures.

At these temperatures friction disappears, and the team expects to be able to measure with great precision how molecules respond to this 'superfluid' state.

Dr von Haeften added: “The results of these studies in liquid helium will also be important to understand ordinary liquids, where such observations are impossible to make.

“This may trigger new applications of drugs for diagnostics and therapy and the development of new materials.”

Source:

Story from the University of Leicester. Please note: The content above may have been edited to ensure it is in keeping with Technology Networks’ style and length guidelines.

Reference:

Mendoza-Luna, L. G., Shiltagh, N. M. K., Watkins, M. J., Bonifaci, N., Aitken, F., & von Haeften, K. (2016). Excimers in the lowest rotational quantum state in liquid helium. The Journal of Physical Chemistry Letters, 7, 4666–4670. doi:10.1021/acs.jpclett.6b02081

Advertisement