We've updated our Privacy Policy to make it clearer how we use your personal data.

We use cookies to provide you with a better experience. You can read our Cookie Policy here.

Advertisement
Paper-Based Immunoassay Detects SARS-CoV-2-Specific Antibodies
News

Paper-Based Immunoassay Detects SARS-CoV-2-Specific Antibodies

Paper-Based Immunoassay Detects SARS-CoV-2-Specific Antibodies
News

Paper-Based Immunoassay Detects SARS-CoV-2-Specific Antibodies

Researchers report a new, minimally invasive, antibody-based detection method for SARS-CoV-2 that could lead to the blood sample-free detection of many diseases. Credit: Institute of Industrial Science/ The University of Tokyo
Read time:
 

Want a FREE PDF version of This News Story?

Complete the form below and we will email you a PDF version of "Paper-Based Immunoassay Detects SARS-CoV-2-Specific Antibodies"

First Name*
Last Name*
Email Address*
Country*
Company Type*
Job Function*
Would you like to receive further email communication from Technology Networks?

Technology Networks Ltd. needs the contact information you provide to us to contact you about our products and services. You may unsubscribe from these communications at any time. For information on how to unsubscribe, as well as our privacy practices and commitment to protecting your privacy, check out our Privacy Policy

Despite significant and stunning advances in vaccine technology, the COVID-19 global pandemic is not over. A key challenge in limiting the spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is identifying infected individuals. Now, investigators from Japan have developed a new antibody-based method for the rapid and reliable detection of SARS-CoV-2 that does not require a blood sample.


The ineffective identification of SARS-CoV-2-infected individuals has severely limited the global response to the COVID-19 pandemic, and the high rate of asymptomatic infections (16%–38%) has exacerbated this situation. The predominant detection method to date collects samples by swabbing the nose and throat. However, the application of this method is limited by its long detection time (4–6 hours), high cost, and requirement for specialized equipment and medical personnel, particularly in resource-limited countries.


An alternative and complementary method for the confirmation of COVID-19 infection involves the detection of SARS-CoV-2-specific antibodies. Testing strips based on gold nanoparticles are currently in widespread use for point-of-care testing in many countries. They produce sensitive and reliable results within 10–20 minutes, but they require blood samples collected via a finger prick using a lancing device. This is painful and increases the risk of infection or cross-contamination, and the used kit components present a potential biohazard risk.


Lead author Leilei Bao from the Institute of Industrial Science, The University of Tokyo, explains: “To develop a minimally invasive detection assay that would avoid these drawbacks, we explored the idea of sampling and testing the interstitial fluid (ISF), which is located in the epidermis and dermis layers of human skin. Although the antibody levels in the ISF are approximately15%–25% of those in blood, it was still feasible that anti-SARS-CoV-2 IgM/IgG antibodies could be detected and that ISF could act as a direct substitute for blood sampling.”


After demonstrating that ISF could be suitable for antibody detection, the researchers developed an innovative approach to both sample and test the ISF. “First, we developed biodegradable porous microneedles made of polylactic acid that draws up the ISF from human skin,” explains Beomjoon Kim, senior author. “Then, we constructed a paper-based immunoassay biosensor for the detection of SARS-CoV-2-specific antibodies.” By integrating these two elements, the researchers created a compact patch capable of on-site detection of the antibodies within 3 minutes (result from in vitro tests).


This novel detection device has great potential for the rapid screening of COVID-19 and many other infectious diseases that is safe and acceptable to patients. It holds promise for use in many countries regardless of their wealth, which is a key aim for the global management of infectious disease. 


Reference: Bao L, Park J, Qin B, Kim B. Anti-SARS-CoV-2 IgM/IgG antibodies detection using a patch sensor containing porous microneedles and a paper-based immunoassay. Sci Rep. 2022;12(1):10693. doi: 10.1038/s41598-022-14725-6

  

This article has been republished from the following materials. Note: material may have been edited for length and content. For further information, please contact the cited source.


Advertisement