We've updated our Privacy Policy to make it clearer how we use your personal data. We use cookies to provide you with a better experience. You can read our Cookie Policy here.


Prenatal Blood Test Could Help To Detect Fetal Heart Defects

Model of a human heart showing the main blood vessels.
Credit: Pixabay
Listen with
Register for free to listen to this article
Thank you. Listen to this article using the player above.

Want to listen to this article for FREE?

Complete the form below to unlock access to ALL audio articles.

Read time: 2 minutes

Researchers at Beaumont Hospital, Royal Oak, have discovered a blood test for pregnant women that uses artificial intelligence and genetic-related biomarkers to accurately detect fetal congenital heart defects well before birth.

“We know that when congenital heart defects are diagnosed early – ideally before birth – outcomes can improve significantly and mortality and morbidity reduced,” said Dr. Ray Bahado-Singh, system chief of Obstetrics and Gynecology, Beaumont Health, and lead author of, “Accurate Prenatal Detection of Fetal Congenital Heart Defects,” which appears in a recent issue of the leading journal, American Journal of Obstetrics and Gynecology.

Dr. Bahado-Singh cautions that larger, prospective studies are needed to validate these findings. However, he said this minimally invasive detection method is an important, first step in establishing an effective, postnatal action plan that quickly puts at-risk infants on track to receive the intensive medical and surgical attention they need.

“Once confirmed, these results could lead to exciting new protocols and, most importantly, improved outcomes for newborns and their families,” Dr. Bahado-Singh said. “The next steps after a positive test would include performing an echocardiogram prenatally and repeated after birth to confirm the presence and nature of a cardiac defect.”

Currently, ultrasound which images the fetal heart, is the only available screening tool for early (prenatal) detection of congenital heart defects, Dr. Bahado Singh said. Unfortunately, in the United States, only about half of fetal congenital heart defects are identified on prenatal ultrasound. Because of this limitation, it is now the standard of care to screen and monitor newborn oxygen levels, via pulse oximetry. Unfortunately, pulse oximetry still misses about 10 % of critical newborn heart defects, leading to increased deaths and severe complications.

Birth defects, particularly ones that stem from heart disease, are a leading cause of infant mortality. These include a hole in the heart, the most common, and other potentially deadly cardiac birth defect that might affect oxygen levels and blood flow at birth; valve and other abnormalities. Smoking, alcohol use, environmental toxins and vitamin deficiency are all known contributors to the development of congenital heart defects. These agents cause chemical (‘epigenetic’) changes in DNA which can affect the function of genes critical to the development of the heart,” Dr. Bahado Singh explained “by turning genes on or off,”.

He continued. “You need a certain group of genes turned on and others turned off, for example, to make sure the chambers of the heart are fully developed. Switching the wrong genes on or off in this normally perfectly orchestrated symphony can cause mal-development leading to major heart defects.”

Artificial intelligence analysis of the circulating (including fetal) DNA extracted from the mother’s blood, Dr. Bahado-Singh explained, “enables us to efficiently review potentially billions of pieces of information in the genome. This includes swiftly identifying specific predictors of a possible fetal heart defect and separating those that need continued monitoring.”

Ultimately, Dr. Bahado-Singh would like to see all pregnant women achieve ready access to screening- through a blood test, which requires no advance appointments or significant time off from work. Those who test positive could then be referred for detailed, fetal, and newborn cardiac ultrasounds and appropriate early intervention, as needed.

“We are still a ways away from that,” he said. “But it’s exciting to contemplate the possibilities.”

Reference: Bahado-Singh R, Friedman P, Talbot C, et al. Cell-free DNA in maternal blood and artificial intelligence: accurate prenatal detection of fetal congenital heart defects. Am J Obstet Gynecol. 2022:S0002937822006184. doi: 10.1016/j.ajog.2022.07.062

This article has been republished from the following materials. Note: material may have been edited for length and content. For further information, please contact the cited source.