We've updated our Privacy Policy to make it clearer how we use your personal data.

We use cookies to provide you with a better experience. You can read our Cookie Policy here.

Test for All Human Coronaviruses, Including SARS-CoV-2 Variants

Test for All Human Coronaviruses, Including SARS-CoV-2 Variants

Test for All Human Coronaviruses, Including SARS-CoV-2 Variants

Test for All Human Coronaviruses, Including SARS-CoV-2 Variants

Read time:

Want a FREE PDF version of This News Story?

Complete the form below and we will email you a PDF version of "Test for All Human Coronaviruses, Including SARS-CoV-2 Variants"

First Name*
Last Name*
Email Address*
Company Type*
Job Function*
Would you like to receive further email communication from Technology Networks?

Technology Networks Ltd. needs the contact information you provide to us to contact you about our products and services. You may unsubscribe from these communications at any time. For information on how to unsubscribe, as well as our privacy practices and commitment to protecting your privacy, check out our Privacy Policy

Scientists at the Center for Infection and Immunity (CII) at Columbia University Mailman School of Public Health and SunYat-Sen University in China have set the stage for the development of highly sensitive antibody tests for infection with all known human coronaviruses, including new variants of SARS-CoV-2. These tests should also allow differentiation of immune responses due to infection and vaccination. The research is published in Communications Biology, a Nature journal.

The HCoV-Peptide array developed by CII scientists consists of 3 million immune markers on a glass chip, covering proteins of all known human coronaviruses, including the SARS-CoV-2. In collaboration with a team at Sun Yat-Sen University, the CII researchers identified 29 immune signatures specific to SARS-CoV-2. These genetic fingerprints (peptides) provide the blueprint for tests that will be used for diagnostics and surveillance. Current antibody tests for SARS-CoV-2 infection may generate false positive results because of cross-reactivity with seasonal coronaviruses responsible for the common cold, as well as MERS-CoV and SARS-CoV-1.

To develop the HCoV-Peptide array, the researchers first analyzed blood samples taken from individuals with asymptomatic, mild, or severe SARS-CoV-2 infections, and controls including healthy individuals and those exposed to SARS-CoV-1 and seasonal coronaviruses. An analysis of all ~170,000 peptides related to known human coronaviruses yielded 29 peptides with the strongest and most specific reactivity with SARS-CoV-2. Next, they validated their test using a second set of blood samples, including those from confirmed cases of SARS-CoV-2, those with antibodies to other human coronaviruses, and healthy individuals.

The new test has a 98 percent specificity and sensitivity. Immune signatures were present from eight days after onset of COVID-19 symptoms to as long as six to seven months after infection.

"This work will allow us and others to build inexpensive, easy to use blood tests that can provide data for exposure as well as immunity," says author Nischay Mishra, PhD, assistant professor of epidemiology at the Columbia Mailman School.

"This work with our colleagues at SunYat-Sen, led by Professor Jiahai Lu, and with Nimble Therapeutics, underscores the importance to public health of global collaboration and partnerships with industry in addressing the challenges of the COVID-19 pandemic," says senior and corresponding author W. Ian Lipkin, MD, director of CII.

Previously, the researchers have used similar methods to develop tests for Zika, acute flaccid myelitis, and tick-borne infections.

Reference: Mishra N, Huang X, Joshi S, et al. Immunoreactive peptide maps of SARS-CoV-2. Commun. Biol. 2021;4(1):1-7. doi: 10.1038/s42003-021-01743-9

This article has been republished from the following materials. Note: material may have been edited for length and content. For further information, please contact the cited source.