
Name Ames MLA MNT ABS UDS Carc.
Compound 1 1 0 0 0 0 1
Compound 2 0 0 1 0 0 0
Compound 3 1 1 1 1 1 1
Compound 4 1 1 0 1 0 0
Compound 5 0 1 0 0 0 0
Compound 6 0 0 0 0 0 0
Compound 7 0 0 0 0 0 1
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An In Silico Test Battery for Rapid 
Evaluation of Genotoxic and Carcinogenic 
Potential of Chemicals 
 
INTRODUCTION 
 
According to the FDA Guidance for Industry, impurities identified below the ICH qualification thresholds 
may be evaluated for genotoxicity and carcinogenicity based on structural activity relationship (SAR) 
assessments using computational software. 
 
This work is an extension of our previous study1 focusing on computational assessment of genotoxic 
impurities in drug products. Our new approach relies on a battery of probabilistic QSAR models 
supplemented by a knowledge-based expert system that identifies structural fragments, potentially 
responsible for hazardous activity.  
 
The analysis was based on experimental data obtained from FDA, and involved 21 endpoints 
corresponding to different mechanisms of toxic action: mutagenicity, clastogenicity, carcinogenicity, etc. 
Probabilistic models for most endpoints were derived using GALAS (Global, Adjusted Locally According to 
Similarity) modeling methodology developed in our group. The updated list of alerting groups contained 70 
distinct substructures. The expert system was highly sensitive, recognizing >90% of potent carcinogens, as 
classified by the FDA. Sensitivity of probabilistic models ranged from about 60% to more than 90%, while 
maintaining high (>80%) specificity of predictions for the majority of considered assays. These results show 
that the described computational platform ensures sufficient prediction accuracy for rapid genotoxicity/
carcinogenicity profiling of various chemicals. 
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  TABLE 1. Key bioassays considered in the study, the respective dataset sizes, and model performance.  

 

EXPERIMENTAL DATA 
 
A concise list of the considered endpoints is provided in Table 1, while data sources are briefly described 
below. 
 
Genetic toxicity: data sets for standard assays reflecting different mechanisms of genetic damage were 
obtained from the FDA.  Gene mutation tests and techniques detecting clastogenic/aneugenic effects are 
included. Data was collected from EPA GENE-TOX database and scientific literature.2 
 
Carcinogenicity: results of chronic (two-year term) carcinogenicity studies in rats and mice were received 
from FDA. This data was based on NTP technical reports, IARC monographs, the Carcinogenic Potency 
DataBase3 and other publicly available sources. Raw data was converted to a binary classification using a 
weight of evidence (WOE) approach2. Classification using the WOE threshold corresponding to “potent 
carcinogens” was used to build the models in the current study. 
 
Reproductive toxicity: experimental data characterizing the potential for endocrine system disruption due  
to Estrogen receptor α binding were acquired from original publications. Compounds were classified as 
binders/non-binders on the basis of their relative binding affinities (RBA) compared to reference ligand 
estradiol. Two cut-offs were used: LogRBA > -3 (“general binding”), and LogRBA > 0 (“strong binding”). 

Mechanism Test system Endpoint N (%Positive) Sensitivity Specificity 
Genetic toxicity 
Mutagenicity Prokaryote Salmonella 7826 (49.5%) 87.1% 81.7% 

Escherichia 1479 (26.1%) 72.5% 87.0% 
Eukaryote Composite 2901 (54.9%) 78.1% 64.0% 

Yeast 658 (52.7%) 86.7% 80.0% 
Drosophila 600 (48.8%) 70.6% 81.8% 
MLA 1272 (60.0%) 76.2% 64.7% 
CHO/CHL  
all loci 

1229 (47.6%) 80.0% 67.5% 

Clastogenicity Chromosome 
aberrations 

In vitro 2034 (46.3%) 74.6% 71.5% 

Micronucleus 
test in rodents 

In vivo 1299 (31.0%) 62.1% 69.5% 

DNA damage UDS In vivo/in vitro 593 (28.0%) 66.7% 76.3% 
Carcinogenicity Rodent Composite 2211 (30.5%) 58.8% 81.9% 

(Data from rats and mice, both genders) 
Reproductive 
toxicity 

Estrogen 
receptor binding 

LogRBA > 0 1464 (51.6%) 82.9% 97.1% 
LogRBA > -3 1464 (23.8%) 92.1% 85.6% 

METHODS 
 
Probabilistic predictive models for genetic and reproductive toxicity endpoints were developed using 
GALAS modeling methodology.4 Each GALAS model consists of two parts: 
1)  Global (baseline) model that reflects general trends in the property of interest. Baseline models were 
built using binomial PLS method based on fragmental descriptors. 
2)  Local corrections were applied to baseline predictions using a special similarity-based routine, after 
performing an analysis for the most similar compounds used in the training set. The local part of the model 
provides the basis for the calculation of reliability index (RI), a value ranging from 0 to 1 that provides a 
quantitative estimate of prediction accuracy.  
 
A single baseline model was derived for groups of endpoints representing different mechanisms of 
genotoxic action (mutagenicity and clastogenicity). This model reflects the “cumulative” toxic potential of 
chemicals in these assays. Experimental values specific to each assay were used in the local model to 
yield the final GALAS model for individual endpoints. An outline of modeling procedures is presented in 
Figure 1.  
 
In case of carcinogenicity, predictive models were derived in a slightly different manner. Due to the 
complexity of the system, the local correction step was only used  to produce RI values, while probability 
estimation also took into account the output of mutagenicity and reproductive toxicity models as well as the 
presence of specific hazardous fragments typical to carcinogens. 
 

FIGURE 1. A schematic outline of the model development workflow. 

SOFTWARE PACKAGE FOR IMPURITY PROFILING 
 
The described profiling system for impurities and  
degradants is available as a part of our ACD/Percepta 
software platform. 

1.  Probabilistic Predictors 
The output of probabilistic models for all considered 

endpoints consists of the following (Figure 4): 
•  p-value–probability that a compound will result 

in a positive test in the respective assay 
•  Coverage–an indication of whether the 

compound belongs to the Model Applicability 
Domain according to the calculated RI value 

•  Call–(+ or -) if the compound can be reliably 
classified on the basis of p and RI values; 
“Undefined” otherwise. 

 
2. Hazard Identification System 
Each hazardous fragment is provided with a short 

description of its mechanism of action, literature 
references, and z-scores.  Z-scores show 
whether the presence of the fragment leads to a 
statistically significant increase in the proportion 
of compounds with a positive test result for a 
particular assay. This information provides 
further evidence regarding the possible 
mechanisms of action. 

For example, acrylic acid derivatives do not cause 
direct DNA damage but are primarily reactive 
towards sulfhydryl groups of proteins (including 
those involved in DNA replication/maintenance).  
As a result, most acrylates are negative in 
reverse point-mutation assays, such as in the 
Ames test. Yet, they cause chromosomal 
aberrations and produce positive results in 
forward mutation tests, such as Mouse 
Lymphoma Assay (Figure 5). 

 

FIGURE 4. ACD/Percepta Impurity Profiling module: 
probabilistic predictions. 

FIGURE 5. ACD/Percepta Impurity Profiling module: 
structural alerts.  

The knowledge-based expert system identifies structural moieties that are frequently present in 
compounds that tested positive in the Ames test, eucaryote gene mutation tests, and chromosomal 
damage assays, as well as in carcinogens acting by non-genotoxic (epigenetic) mechanisms. The final list 
includes 70 structural alerts, of which 33 represent mutagens, 24–clastogens, and 13–epigenetic 
carcinogens (androgens, peroxisome proliferators, etc.).  

The alert list is not limited to directly acting substructures, such as planar polycyclic arenes, aromatic 
amines, quinones, N-nitro and N-nitroso groups, but also includes various fragments that may undergo 
biotransformation to reactive intermediates. As an example, troglizatone, a thiazolidinedione class 
antidiabetic drug, was classified by the FDA as a potent carcinogen and has since been withdrawn from the 
US market. The carcinogenic effect of this drug is mediated by several reactive metabolites. In human liver 
microsomes, the chromane ring of troglitazone is metabolized by CYP3A4 to form quinone and quinone-
methide products. Furthermore, oxidative cleavage of the thiazolidinedione ring results in a reactive 
sulfenic acid metabolite that also contains an isocyanate moiety.4 As shown in Figure 2, both bioactivation 
pathways are predicted by the presented Hazards identification system.   
 

GENOTOXICITY/CARCINOGENICITY HAZARDS 

FIGURE 2. Biotransformation of troglitazone in human liver microsomes. 

Overall, the expert system was able to detect 94% of mutagens in the Ames test DB and 90% of 
compounds labeled as potent carcinogens by the FDA (Fig. 3). The performance of probabilistic models for 
various endpoints is listed in Table 1. Evidently, sensitivity of predictions is very high in well studied 
systems, such as Ames Salmonella reverse mutation assay, while more work is needed to improve 
detection of active chemicals in less well understood systems (UDS) or complex multi-mechanism 
endpoints (carcinogenicity).  

CLASSIFICATION RESULTS 

94% 

6% 

Structural alerts: 
Sensitivity to mutagens 

At least one alert 
found 
No structural 
alerts found 

90% 

10% 

Structural alerts: 
Sensitivity to carcinogens 

At least one alert 
found 
No structural 
alerts found 

FIGURE 3. Results of genotoxicity/carcinogenicity hazard identification. 

NOTE: Sensitivity and specificity values are provided for test set compounds within the Model Applicability 
Domain, as indicated by Reliability Index (RI) ≥ 0.3, except Rodent carcinogenicity where statistics for the 
entire test set are given. 

Specificity is mostly close to, or 
exceeds, 80%. Lower values are 
observed in eucaryote assays, 
such as in vivo Mouse Lymphoma 
Assay (MLA), where hazardous 
chemicals may  produce a 
negative outcome due to their 
inability to reach the site of action. 


