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GLOBAL PHYSICOCHEMICAL RULES 
 
The majority of existing QSAR models are statistics-driven, i.e., they are derived in pursuit of the best 
possible fit to available data. However, in lead optimization projects straightforward mechanistic 
interpretation of the models is a much more powerful feature than good statistical performance since it may 
help guide the efforts towards more promising candidates. Many biological properties in fact represent an 
interplay of the simplest physicochemical characteristics and can be successfully modeled by mechanistic 
approaches. 
 
Brain delivery and intestinal absorption serve as good examples of such endpoints. Compounds entering 
the brain by passive diffusion across the blood-brain barrier can be classified as penetrating (BBB+) or 
non-penetrating (BBB–) on the basis of two quantitative parameters: the extent of brain/plasma partitioning 
at equilibrium and equilibration rate. As outlined in Table 1, they represent a multitude of processes mostly 
governed by lipophilicity and ionization [1]. The same property may have opposite effects on different 
processes, so achieving good BBB penetration means finding an optimal balance between the two 
properties. 
 
Figure 1 illustrates the sigmoid relationship between the fraction absorbed in the intestine (fa) and octanol/
water logP. Sizes of the bars indicate the range of variation in fa of equilipophilic drugs with varying H-bond 
donating potential (NHD) and molecular size (Vx). fa is very sensitive to slight changes in physicochemical 
characteristics on the steep part of the curve. Absorption of hydrophilic drugs also varies considerably, 
which can be explained by possible contribution of paracellular transport routes. [2].  
 
 
 
 
 
 

SCHEME 1. A workflow demonstrating the use of a pairwise QSAR in solubility optimization.  

TABLE 1. Influence of physicochemical properties on 
processes involved in drug permeation across BBB. 

COMMERCIAL FATE: SYNTHESABILITY AND PATENTABILITY 
 
The factors that will impact the commercial fate of a particular analog are not limited to its potency and 
ADME/Tox profile. There are also a number of aspects that are not associated with a compound’s suitability 
to be used as a drug, namely synthetic feasibility and patentability prospects. Although conceptually different, 
these are still inherent parts of the lead optimization process. Computational methods used to evaluate 
whether the compound is readily synthetically accessible and whether it belongs to a substantially novel 
chemical class rely on fragmenting the molecules according to a specific set of rules and comparing the 
frequencies of found fragments with those in known databases [8]. 

Trainable QSAR Model of Plasma Protein Binding and its 
Application for Predicting Volume of Distribution 

PRE-SCREENING STRUCTURAL GROUPS FOR TOXICITY 
Although accurate prediction of a toxicological profile of candidate compounds is a challenge on its own, 
insight on a compound’s hazardous potential may also be gained from knowledge-based rules. It is known 
from literature that certain structural fragments are likely to be associated with high acute toxicity or 
genotoxic (carcinogenic) activity. Filtering out known alerting groups from the database of substituents, 
used in lead optimization, reduces the risk that the final optimized compound would have serious toxicity 
findings. Numerous literature reports suggest that even well-known structural moieties, such as an 
aromatic nitro-group, should be avoided [4] (see Figure 3). 

 

 

  

FIGURE 3. Biotransformation pathways of nonsteroidal antiandrogens leading to hepatic adverse effects. 
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INTRODUCTION 
 
Of all the challenges facing medicinal chemists in general, one of the most significant must be transforming 
an active molecule into a viable drug. Lead optimization efforts are guided by a combination of factors, 
such as potency, ease of synthesis, patentability concerns, specific synthetic constrains of the interaction 
with the target, as well as the lead’s toxicity and ADME properties. Physicochemical profiling is carried out 
very early to get a jump-start in the drug discovery process. Even during hit-to-lead and lead optimization 
many individuals are involved in the determination of these properties to keep projects focused on 
molecules that are more likely to be good drug candidates. The advent of various in silico techniques has 
led many to believe these methods would become the ‘holy grail’ of the future drug discovery. However, 
despite constant advances in the field and the huge number of available models enabling predictions of a 
multitude of properties, computational approaches in general still fail to meet high initial expectations.  
A rational approach to computer-aided lead optimization should involve a variety of techniques including 
predictions of ADME/Tox properties with a mechanistic insight, and routines that address other issues 
associated with the compound’s suitability for use as a drug. 

SCHEME 3. Possible approaches to assess the compound’s ease of synthesis and structural novelty. 

SCHEME 2. A proposed workflow of in silico lead optimization involving ADME/Tox profiling combined with 
Auto-SAR utilizing available potency data. 

LOCAL ACTIVITY CLIFFS: PAIRWISE QSAR 
Although physicochemical rules and simple statistical models capture general trends in the relationship 
between the property of interest and structural features of compounds, in many situations such global rules 
are insufficient. This occurs in the case of local ‘anomalies’–the so-called ‘activity cliffs’–when small 
structural changes lead to unproportionally large changes in observed effects. Therefore, use of advanced 
statistical techniques such as pairwise QSAR (also referred to as molecular match pairs) is desirable in 
order to obtain a reliable estimate of the influence of changing substituent in the particular chemical 
context. The essence of pairwise QSAR method is as follows [5,6]:  
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FIGURE 2. Global physicochemical rules for identification of potential ligands of P-gp and hERG. 

•  The property database is searched for the pairs of molecules that represent a particular structural 
modification. 

•  Among these pairs, the ones with core scaffolds most similar to the target query are selected. The effect 
of the proposed modification in the local chemical environment is evaluated on the basis of available data 
for selected transformations. 

Scheme 1 shows how a pairwise QSAR can be used to identify the optimal structural modification that 
would result in the most favorable change of the analyzed property. 
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INTEGRATING POTENCY DATA: AUTO-SAR 
A natural extension of all above concepts related to ADME/Tox profiling would be to include available 
potency data in the analysis. This task can be accomplished by the means of automatic Hansch and/or 
Free-Wilson type QSAR analysis. A small dataset of measured potency values for 20+ compounds with 
substituent alteration performed in at least two sites would suffice for derivation of a simple Hansch type 
model describing the substituent contributions to the compound‘s overall potency in terms of their 
electronic effects. Alternatively, a Free-Wilson approach may be employed, directly relating the changes in 
activity levels to the presence or absence of a particular structural element [7]. The modified lead 
optimization workflow would then look like that depicted in Scheme 2. This approach would solve the 
imminent issue that candidates suggested by the software solely on the basis of their ADME/Tox profiles 
may fail the potency requirements.  
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CONCLUSIONS 
 
A key element for successful utilization of in silico tools in lead optimization is mechanistic interpretability of 
predictive models. Rational strategy of lead optimization should aim at achieving balanced physicochemical 
profiles of candidate compounds that would translate into the desired ADME properties. In those cases when 
a successful compound does not follow general rules, local models (pairwise QSAR) might help in achieving 
the desired balance. Compound synthetic accessibility and novelty can also be assessed using chem-
informatic approaches, comparing substructures of different sizes in the compounds with the ones in 
available chemistry. 
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Simple physicochemical trends are evident for complex properties characterizing protein-ligand 
interactions. Figure 2 illustrates a clear distinction between substrates (inhibitors) and non-substrates (non-
inhibitors) of human P-glycoprotein (P-gp) on the basis of the compounds’ molecular weight, lipophilicity 
(logP), and H-bond accepting potential represented by Abraram’s B parameter. [3] Similar findings are 
observed when hERG channel inhibition is considered. Additionally, susceptibility to interactions depends 
on the ionization state: presence of basic center enhances hERG inhibition, while strong acidic groups  
(pKa < 4) are detrimental for binding to both hERG and P-gp. 

 
 
 

FIGURE 1. Fraction absorbed vs. logP  
for acids with NHD = 4-6, Vx = 0.5-1.5. 
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