# Three-dimensional quantitative structure-activity relationship analysis and **ADME predictions of guanylhydrazone coactivator binding inhibitors of** estrogen receptors



Sergey Shityakov\* and Thomas Dandekar

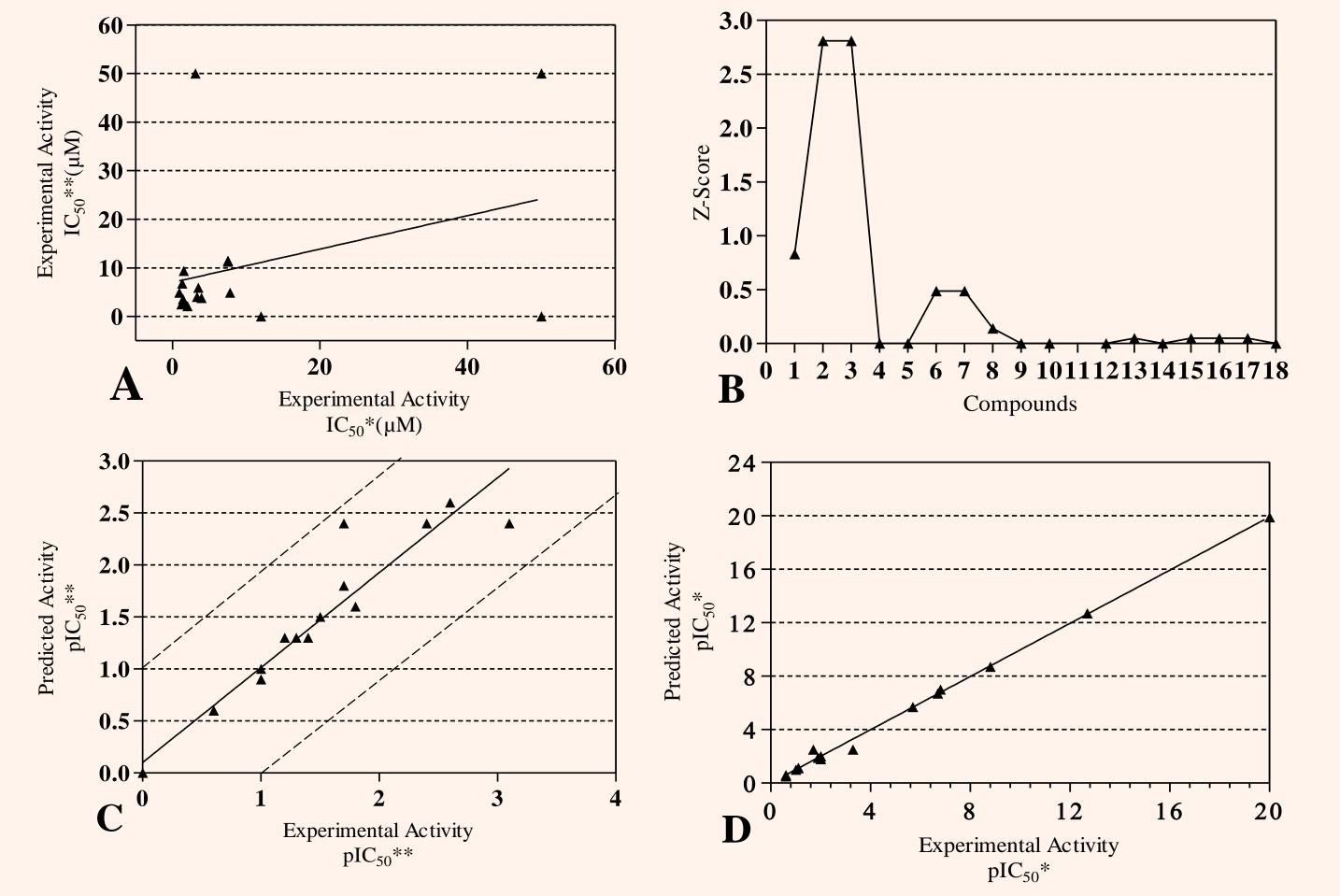
**Department of Bioinformatics** 

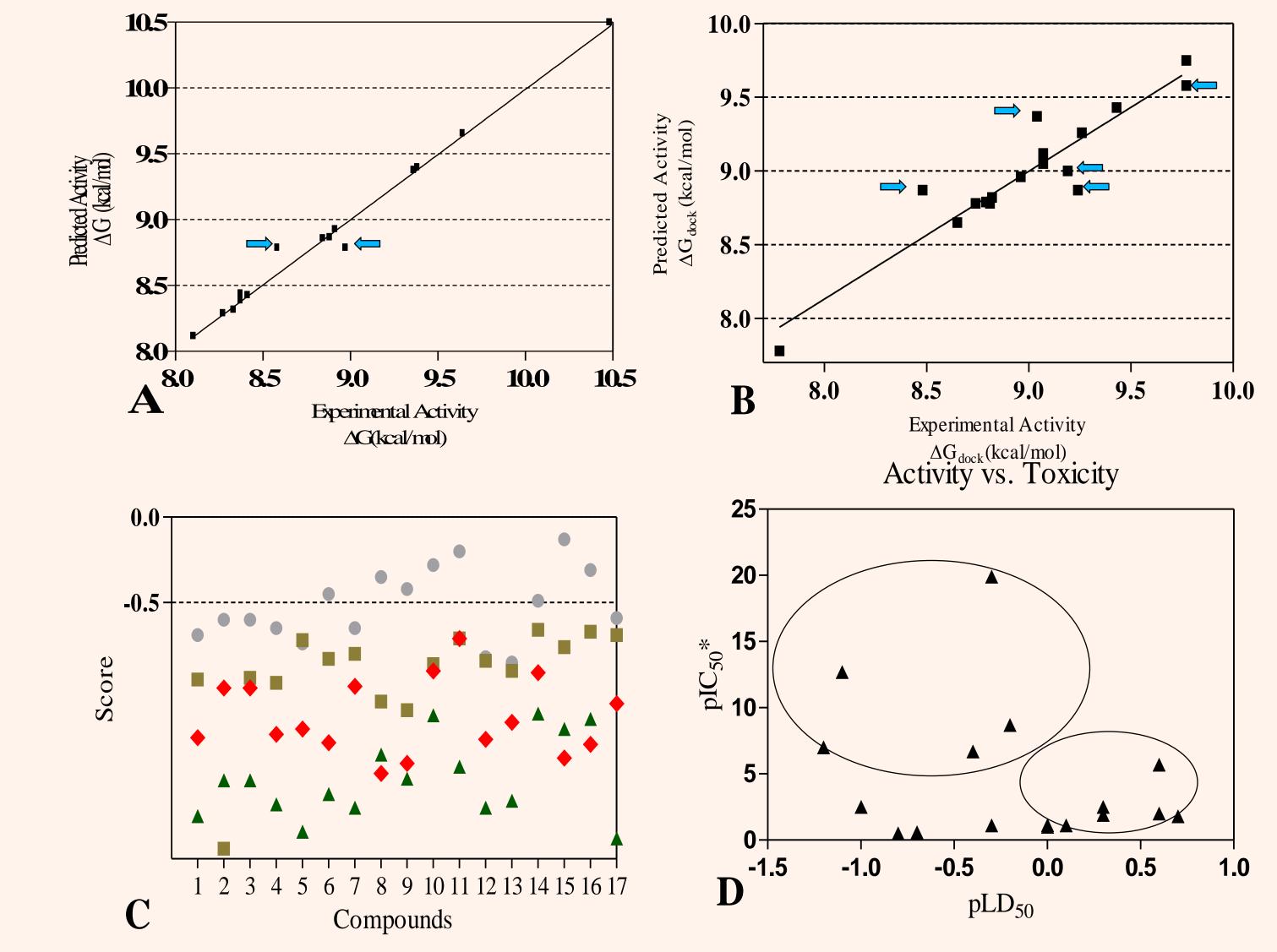


Biocenter of the University of Würzburg, Würzburg, Germany

### \*shityakov@vim.uni-wuerzburg.de

#### Introduction


The estrogen receptors (ER) refer to a group of the nuclear hormone receptor superfamily of ligand-mediated transcriptional factors. They bind to a DNA and regulates gene expression. Over expression of this type of receptors leads to a breast cancer progression. Hormone-responsive breast cancer develops resistance to conventional anti-cancer therapy, and this becomes a major problem in a breast cancer therapy. ER inhibitors (Tamoxifen) can effectively block ER to treat the tumor, but no more effective due to ER resistance to them [1]. Here, we report the exploration of the series of guanylhydrazone molecules, which block ER transcription through different mechanisms than traditional antagonists.


| Compound | $\Delta G_{exp}$ | $\Delta G_{exp \ pred}$ | $\Delta G_{ m dock\ actual}$ | $\Delta\Delta G_{ m dock\ actual}$ | $\Delta G_{ m dock\ refined}$ |
|----------|------------------|-------------------------|------------------------------|------------------------------------|-------------------------------|
| 1        | 8.38             | 8.43                    | -7.38                        | 0.05                               | 9.04                          |
| 2        | 8.98             | 8.78                    | -7.15                        | -0.18                              | 8.81                          |
| 3        | 8.59             | 8.78                    | -7.08                        | -0.25                              | 8.74                          |
| 4        | 8.28             | 8.28                    | -6.12                        | -1.21                              | 7.78                          |
| 5        | 8.42             | 8.42                    | -7.6                         | 0.27                               | 9.26                          |
| 6        | 8.34             | 8.31                    | -7.53                        | 0.20                               | 9.19                          |
| 7        | 8.89             | 8.86                    | -8.11                        | 0.78                               | 9.77                          |
| 8        | 9.39             | 9.39                    | -7.41                        | 0.08                               | 9.07                          |
| 9        | 8.85             | 8.85                    | -7.16                        | -0.17                              | 8.82                          |
| 10       | 8.92             | 8.92                    | -7.13                        | -0.20                              | 8.79                          |
| 11       | 9.65             | 9.65                    | -6.99                        | -0.34                              | 8.65                          |
| 12       | 8.11             | 8.11                    | -7.41                        | 0.08                               | 9.07                          |
| 13       | 8.38             | 8.38                    | -7.30                        | -0.03                              | 8.96                          |
| 14       | 10.49            | 10.49                   | -8.11                        | 0.78                               | 9.77                          |
| 15       | 9.37             | 9.37                    | -6.82                        | -0.51                              | 8.48                          |
| 16       | 9.37             | 9.37                    | -7.58                        | 0.25                               | 9.24                          |
| 17       | 10.49            | 10.49                   | -7.77                        | 0.44                               | 9.43                          |

# **Computational methods**

The three-dimensional database was created on a basis of the MOE molecular modeling package. The molecules contain different  $IC_{50}$ : cell-based assay of reporter gene activity and mammalian two-hybrid assay (M2H). The IC<sub>50</sub> was converted to pIC<sub>50</sub> scale (-log IC<sub>50</sub>), in which higher values represent higher exponential potency. The QSAR models were built for both sets of p  $IC_{50}$ values separately to distinguish the best model. The predicted  $pIC_{50}$  parameters of entire training set (best-fit model) were cross evaluated and validated with the descriptors of the test set of molecules. The dataset included the same 17 molecules with the different IC<sub>50</sub> values ( $-\log IC_{50}$ ) (M2H assay). The molecules are aromatic, polar and properties such as molar refractivity and the logarithm of the (octanol/water) partition coefficients are important in describing such systems.

# Results





\*- cell-based assay of reporter gene activity

\*\*- mammalian two-hybrid system assay (M2H)

Figure 1: Measured activities ( $-\log IC_{50}$ ) versus predicted activities (A, C, D). Correlation plot for:  $-\log IC_{50}^*$ : R = 0.9984, R<sup>2</sup>= 0.9969,  $-\log IC_{50}$  predicted: 0.996895 ( $-\log (IC_{50}^*)$ ) + 0.0140789; -log IC<sub>50</sub>\*\*: R = 0.9529, R<sup>2</sup> = 0.9080, -log IC<sub>50</sub> predicted = 0.908014(-log (IC<sub>50</sub>\*\*)) + 0.12391. The 'residual' deviation is not exceeding 1.0 or more units of  $\Delta pIC_{50}$ , which represents a good fit to the experimental data. 'Residual' deviation ( $SD_{AG} = +/-1.0$ ) is equal to experimental activity (-log IC<sub>50</sub>) except to the predicted activity (-log IC<sub>50</sub>). The dashed lines mark deviations of 1.0 (0.5  $\chi$  factor) logarithmic unit from the ideal prediction. There are only two Z-score outliers, the choice of descriptors can be considered as adequate (**B**).

#### GPCR ligand Ion channel modulator

▲ Kinase inhibitor ◆ NR ligand

**Figure 3:** We defined  $\Delta\Delta G$  as the difference of the  $\Delta G$  (Gibbs free energy of binding from Autodock output files) for experimental and docking values,  $(\Delta\Delta G_{dock actual} = 1 / (\Delta G_{dock}))$ actual - mean  $\Delta G_{\text{dock actual}}$ ;  $\Delta G_{\text{dock refined}}$  = mean  $\Delta G_{\text{exp}} + \Delta \Delta G_{\text{dock actual}}$ ;  $SD_{\Delta G}$  = +/-0.04.  $\Delta G$ was calculated as:  $\Delta G = RTln(IC_{50})$  (Table, A, B). ADME properties show predicted possibility of these compounds to inhibit some of the key cellular proteins such as G-protein coupled receptors and nuclear receptors (C). The therapeutic window is the activity vs. toxicity ratio of the compounds. Hence, there might be a different probability to hit a highly toxic compound at randomly given  $pIC_{50}$  range. The motivation for the toxicity is that the strongest inhibitors are most probably less toxic (**D**).

# Conclusion

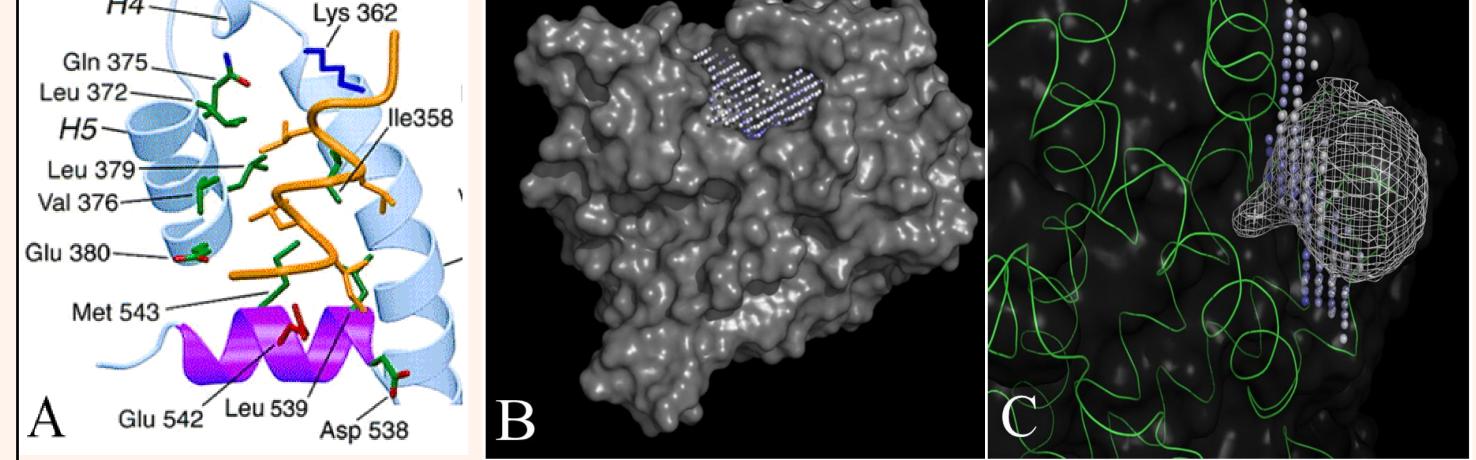



Figure 2: Center of the grid box. The affinity grid coordinates are crucial for successful and correct ligand - protein simulation. The crystallographic structure of the ERα-GRIP1 complex was inspected for protein - ligand interactions manually. As was previously shown [2,3], the GRIP1 LxxLL domain (A) is important for binding, hence the center of the grid was placed upon LxxLL relative position in the ER $\alpha$  (B). The GRIP1 peptide was removed prior to docking. Established grid coordinates (Å) and other parameters were set to -7.98 (x), -17.09 (y), -0.67 (z) as a grid box center, 64000 of current grid points per map and 0.375 Å of spacing (C).

In the present study, we have analyzed a series of 17 guanylhydrazone coactivator binding inhibitors for the ER $\alpha$ . We prepared and characterized the dataset of potential inhibitors of estrogen receptors; build a QSAR model, which is based on the experimental data (IC<sub>50</sub>). The compounds represent binding affinity modes in cell-based assays and docking studies, which have strong correlations upon the 3D QSAR model.  $IC_{50}$  values were converted to Gibbs free energy of binding parameters to evaluate deviations in experimentally obtained and *in silico* calculated data. Additional work related to the activity and receptor specificity of these and other coactivator binding inhibitors will be the subject of the further analyses.

# Acknowledgment

The authors are grateful to the **IZKF** (Interdisziplinäres Zentrum für Klinische Forschung der Universität Würzburg) for the support of this work.

## References

[1] A. L. LaFrate et al., Bioorg. Med. Chem., 16(23): 10075-10084 (2008) [2] A. L. Rodriguez et al., J. Med. Chem., 47(3):600-611 (2004) [3] A. K. Galande *et al.*, *J. Pept. Res.*, 63(3):297-302 (2004)