
Experimental data 
(Ultrafiltration, equilibrium dialysis, etc.)

Predefined fragment set

1 0 0 0 0 1 0 0
0 1 1 0 0 0 0 0
0 0 0 1 0 0 0 1
1 0 0 0 0 0 0 0
1 0 0 0 0 0 1 0
0 0 0 0 1 0 0 0

Descriptors

SD

PLS with multiple bootstrapping
Baseline log Kapp model

Compound %PPB log Kapp

Ketorolac 99.2 2.09
Ibuprofen 99.0 2.00
Diazepam 98.7 1.88
Promazine 90.0 1.95
Acebutolol 26.0 -0.45

Self-Training Library
Similarity correction (∆)

Log Kapp = Baseline log Kapp + ∆

%100
101

10% log

log

⋅










+
=

app

app

K

K

PPB

Experimental data 
(Ultrafiltration, equilibrium dialysis, etc.)

Predefined fragment set

1 0 0 0 0 1 0 0
0 1 1 0 0 0 0 0
0 0 0 1 0 0 0 1
1 0 0 0 0 0 0 0
1 0 0 0 0 0 1 0
0 0 0 0 1 0 0 0

Descriptors

SD

PLS with multiple bootstrapping
Baseline log Kapp model

Compound %PPB log Kapp

Ketorolac 99.2 2.09
Ibuprofen 99.0 2.00
Diazepam 98.7 1.88
Promazine 90.0 1.95
Acebutolol 26.0 -0.45

Self-Training Library
Similarity correction (∆)

Log Kapp = Baseline log Kapp + ∆

%100
101

10% log

log

⋅










+
=

app

app

K

K

PPB

RI > 0.6

%PPB (predicted)

%
P
P
B
 (

o
b
se

rv
e
d
)

0

20

40

60

80

19 38 57 76 95

Series 1
y = 0.9567x + 1.3841

R²= 0.8243
%PPB (RI > 0.3)

%PPB (predicted)

%
P
P
B
 (

o
b
se

rv
e
d
)

0

20

40

60

80

20 40 60 80

Series 1
y = 0.8981x + 6.3645

R²= 0.7043

After model development, VSS data for further 92 compounds not present in our data set were extracted 
from a recent publication [4]. These were utilized as a second validation set to ensure that our model, 
parameterized using Vd data determined by different methods, was able to provide accurate predictions in 
comparison with high-quality VSS values.

Experimental VSS data were converted to pfut using Eq. 2 and the resulting values were subject to a non-
linear fitting procedure relating tissue affinity of drugs to major physicochemical determinants.

INTRODUCTION

Plasma protein binding (usually expressed as a percentage bound fraction %PPB) and volume of 
distribution (Vd) are the two major parameters characterizing drug disposition in the body.

Drug molecules circulate in plasma either free or bound to plasma proteins such as albumin (acidic drugs), 
α1-acid glycoprotein (basic drugs), lipoproteins (neutral compounds), etc. The extent of plasma protein 
binding (PPB) is a key determinant of all subsequent distribution processes including CNS permeation, 
partitioning into tissues, and elimination.

FIGURE 2. An outline of %PPB model development 
process.

3. Results
Performance of the obtained model on test set compounds is illustrated in Fig. 3. Here, predictions are 
filtered according to calculated RI values. As evident in Fig. 3, the model demonstrates sufficiently high 
prediction accuracy (R2 ≈ 0.7) if considered compounds obtain at least borderline RI values (RI > 0.3), 
whereas even better correlation between experimental and predicted %PPB is observed for compounds 
obtaining high RI values (RI > 0.6). These results indicate good predictive power of the model and suggest 
the possibility to identify accurate predictions using Reliability Index.

TABLE. Statistical characteristics of the Vss predictive model
obtained in the current study.
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FIGURE 4. Model performance for predicting pfut (a) and VSS (b) for internal test set compounds.

FIGURE 3. %PPB model performance for test set compounds at different reliability thresholds: 
a) RI > 0.3; N = 265; b) RI > 0.6; N = 107.

Data set N
pfut Prediction VSS

Prediction
R2 RMSE AFE

Training set 346 0.75 0.44 2.03

Internal test set 150 0.80 0.41 1.96

External set 1 352 0.74 0.50 2.28

External set 2 92 0.73 0.47 2.09
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Mechanistic Prediction of Volume of Distribution: 
The Influence of Plasma and Tissue Binding
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TRAINABLE GALAS MODEL OF PLASMA PROTEIN BINDING

The predictive algorithm for percentage bound fraction in human plasma was built using a recently 
developed GALAS (Global, Adjusted Locally According to Similarity) modeling approach [1]. Each GALAS 
model consists of two parts – a global (baseline) statistical model and a similarity based routine that 
introduces corrections to baseline predictions using experimental data for the most similar compounds from 
the training set (local model). The method is outlined in Fig. 2.

As shown in Fig. 1, molecules unbound in plasma may diffuse 
through capillary walls and then undergo non-specific binding to 
lipid constituents of the tissues. Tissue binding strength 
depends on physicochemical characteristics of drugs (such as 
lipophilicity and ionization) and, together with the extent of 
binding in plasma, determines what proportion of the 
administered amount of drug (D) remains in circulation (Cp). 
When all tissues are considered a single homogenous 
compartment, this measure of relative tissue/plasma binding 
strength is denoted volume of distribution: Vd = D/Cp. Vd is an 
important parameter since it affects the rate of drug elimination 
from the body – better distribution into the tissues (higher Vd
values) leads to slower elimination and thus prolongs drug 
action.

FIGURE 1. A simplified scheme of the 
processes influencing drug distribution.

1. Modeling Details
The baseline model is a Partial Least Squares (PLS) model 
built using a predefined list of structural fragments as 
descriptors. The considered fragments include various atom 
types, functional groups, and interactions, as well as certain 
fragments describing molecular shape and ‘pharmacophores’ –
typical scaffolds of highly protein-bound drug classes.  

The model was developed using a data set of 1453 compounds 
collected from literature that was split into training and test sets 
consisting of 1162 and 291 compounds respectively.

To retain linear relationship between interaction strength and 
structural descriptors, %PPB is expressed in the form of the 
apparent affinity constant log Kapp. Baseline predictions and 
similarity corrections are applied to this constant, and the final 
calculated value is converted to percentage bound as shown in 
Fig. 2.

2. Reliability Index and Model Training
One of the key features introduced by GALAS modeling 
methodology is the integrated quantitative estimation of 
prediction reliability by the means of calculated Reliability Index 
(RI) values ranging from 0 to 1. Calculated RI value for a 
particular compound depends on its similarity to the training set 
compounds and the consistency of experimental data for the 
most similar molecules.

Another major benefit of GALAS methodology is the ‘on the fly’
training ability of the model. New user-defined data may be 
added to the Similarity correction part of the model (Self-
training Library) at any time without rebuilding the initial 
baseline model. Such addition results in an instant 
improvement of prediction accuracy for similar compounds and 
allows for expansion of the Model Applicability Domain to 
account for new compound classes not covered by the original 
training set.

NON-LINEAR QSAR MODEL OF DRUG BINDING TO TISSUES

1. Theory
Volume of distribution at steady-state denoted as VSS is related to free fractions of drug in plasma (fup) and 
tissue (fut) and organism-specific physiological parameters by Øie-Tozer equation:

Here RE/I is the extra-/intravascular ratio of albumin, and V terms are the volumes of the respective 
compartments where indices P, E, and R correspond to plasma, extracellular fluid, and the remainder 
(tissue) fluid respectively. If human-specific values of the respective parameters are entered into the above 
equation [2], similar values are obtained for both VP and VE corrected for RE/I ratio, and these volumes can 
be replaced by a single term, VA (albumin distribution volume), yielding the following simplified equation:

Eq. (2) also contains an additional permeability indicator variable (IP). The reason for its inclusion is that the 
original Øie-Tozer equation does not reflect the fact that very hydrophilic compounds may be effectively 
restricted to extracellular fluid due to poor cell permeation. Such molecules are assigned the value IP = 0 
leading to maximum VSS ≈ 0.2 L/kg; otherwise (IP = 1) the compound may be distributed within total body 
water (VSS ≈ 0.6 L/kg) even if it does not significantly interact with tissues.

Fraction unbound in plasma may be readily calculated using the trainable GALAS model described above, 
therefore the objective devolves to modeling drug binding to tissues (fut). By analogy with binding to 
albumin or other plasma proteins, drug affinity to tissue may be described by an apparent binding constant
Kb (where pfut = -log fut = -log(1 + Kb)), which in turn may be modeled using our previously proposed non-
linear ionization specific approach [3] in terms of simple physicochemical properties (log Po/w, and pKa).

2. Data & Methods
Experimental Vd values (apparent or steady-state) for about 850 compounds were compiled from drug 
prescribing information, reference tabulations, and original articles dealing with determination of drug 
pharmacokinetics.

Although the physiological Øie-Tozer equation is strictly applicable only to the steady-state volume of 
distribution (VSS), most apparent Vd values that did not contradict the general physicochemical tendencies 
were also kept in analysis, preferring a larger diversity of training set compounds over slightly better 
statistical characteristics of the model. 

Since VSS is inter-related with fut by Eq. (2) that includes the fup term, the accuracy of VSS predictions is 
highly reliant on the quality of plasma protein binding data. To minimize the impact of uncertainty in fup
values, only compounds with available experimental values of both VSS (Vd) and fup were selected for 
model development. The resulting data set was randomly split into training (346 compounds) and test (150 
compounds) sets. The remaining 352 compounds were reserved as an external validation set to evaluate 
model performance on a ‘real world’ example where both fup and fut are predicted by our algorithms.
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FIGURE 5. Model performance for predicting pfut in the external validation sets.
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3. Results
Predictive performance of the current model 
is demonstrated in the Table, Fig. 4, and
Fig  5. In addition to R2 or RMSE parameters, 
accuracy of VSS predictions is frequently 
evaluated using the AFE (Average Fold Error) 
statistic which is calculated as follows:

Evidently, the model produces VSS predictions  
with only about 2-fold average error in both 
training and test sets. 

Also, only a small fraction of the test set falls outside of the 3-fold  error margin indicated by dashed lines in 
Fig. 4. Comparable statistical parameters were achieved in both external sets, and RMSE of predicting drug 
affinity to tissues did not exceed 0.5 log units in all cases. Yet, it can be noticed that after transformation of 
Vd values to pfut according to Eq. 2, a number of compounds obtain pfut < 0 that corresponds to fut > 1 and 
hence indicates an error in the data. In the first validation set this may arise due to the uncertainty in 
predicted fup values, however experimental fup values were available for most compounds in the second 
external set. In a recent publication [2], Waters et al. discussed the presence of such erroneous data in the 
same data set and outlined that in many cases unexpectedly low Vd may be explained by involvement of 
active transport processes in distribution of the respective drugs. These findings show that predictions which 
take into account the intrinsic relationship between Vd and plasma protein binding help identify potentially 
problematic experimental data.
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