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Overview ’

Dynamic cellular networks determine production of proteins in
the cells in our body. The Rb-E2F network is a key example: it
controls cell cycle, proliferation and degradation - a key network
in almost all cancers. Gene networks can be modeled using known
interactions between activators, repressors and their targets.
Emerging technologies reveal single-cell level stochastic variation
- complex biological “intrinsic noise” - that plays a major role in
network dynamics. We develop statistical models of such single-
cell processes - fine-time scale dynamic network models. Model
estimation is challenging - requiring informative priors and
custom Metropolis proposals. Rb-E2F examples introduce this
emerging area of statistical systems biology.
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« Sources of stochastic “intrinsic noise”
Novel discrete time statistical models account for both
Introduce latent noise processes and latent protein levels
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Simulations

Stochastic model accurately reflect real data

Parameter Estimation

Parameter estimation
Red line indicates true value
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Priors
Truncated normals and gammas for key parameters

Gibbs & Metropolis-Hastings

+ Full conditionals easy for k, d, ¢, o,, 65 and o,
+ Random walk Metropolis-Hastings for K and n

Forward filtering backward sampling (FFBS)
FFBS to impute latent E2F protein process and intrinsic noise process A.

+ E2F - FFBS handles missing data
+ A process: linearization in . —Metropolis proposal

Comments

* Novel stochastic models reflect single cell realities:
- inherent probabilistic regulatory mechanisms
- biochemical activation/repression/interaction
probabilities
- systematic intrinsic fluctuations
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+ Some current foci on:
- effective MCMC methods including improved
likelihood approximations for MH proposals
of latent noise processes
- block updating of parameters
- expanding the gene network - multiple nodes
- evaluating the impact of chosen discrete time scale
\ l - imaging: extraction of real-time data from movies
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* Multi-scale models: synthesizing single-cell models with
high-throughput genomic data of cell populations
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