

Scalability of Heterocyclic Microwave-Assisted Transformations From Batch to Continuous Flow. A Case Study

Jennifer M. Kremsner, Bimbisar Desai, Alexander Stadler and C. Oliver Kappe

Institute of Chemistry, Organic and Bioorganic Chemistry, Karl-Franzens-University Graz, Heinrichstrasse 28, A-8010 Graz, Austria website: http://www.maos.net email: jenny.kremsner@uni-graz.at

Introduction

The Lewis acid catalyzed condensation of an aldehyde 1, β-diketoester 2 and urea 3 leads to a 3,4-dihydropyrimidin-2-(1H)-one (DHPM) also termed as **THE BIGINELLI SCAFFOLD.** ¹

- ¹ Stadler, A.; Kappe, C. O. J. Comb. Chem. 2001, 3, 624
- > Several Biginelli scaffolds have biological value
- > Microwave techniques accelerate the synthesis
 - Useful in rapid optimization for drug discovery
- > Need to develop these heterocycles in large scale

Herein we present a case study on the small to large scale microwave-assisted synthesis of the DHPM 4 under batch and continuous flow conditions in monomode and multimode cavities

Synthesis in multimode cavity (40 mmol)

MicroSYNTH Labstation (Milestone)

REACTOR SPECIFICATIONS:

- Multimode MW cavity (1000W)
- Single (MonoPrep) (3b) and multiple vessel (6, 16 & 24 rotor) capability
- Glass/quartz (12-50 mL) or TFM vessels (70-100 mL)
- Max. temperature (180 °C) / Max. Pressure (15 bar)
- Efficient cooling (30 °C/min) in MonoPrep set up (Fig. 3b)

Reaction conditions for MonoPrep Synthesis of DHPM 4

40 mmol reaction mixture Solvent: (3:1) AcOH/EtOH (20 mL) Catalyst: FeCl₃ . 6H₂O (10 mol %) Microwave conditions: 120 °C, 10 min

Parallel temperature monitoring by IR sensor and internal fiber-optic probe

Isolated yield of DHPM 4 50-52 %

Continuous flow synthesis of DHPM 4 (40 mmol)

CEM Discover

CEM Discover / Voyage

Reactor Specifications:

- ➤ Continuous MW power (0-300W)
- Circular single-mode cavity (Fig. 5b)
 Open (1-125 mL) and closed vessels (10 or
- 80 mL) with 20 bar pressure limit
- Temperature monitoring by IR
- > Direct (invasive) or Indirect (non-invasive) pressure monitoring Forced cooling feature (PowerMax)
- > Magnetic stirring and hot keys to change parameters on fly
- > Flow through reactor (Fig. 5c) built on Discover platform (Fig. 5a)
- Temperature monitoring by fiber-optic
- > Reaction in a Flow cell (Fig. 5d) placed in the MW cavity
- > Reaction mixture injected by HPLC pumps through a heated zone/cavity (Fig. 5e)

Continuous Flow (CF) synthesis of DHPM 4

- > 40 mmol homogeneous reaction mixture
- > Total reaction volume 25 mL
- 20 mL EtOH/AcOH (4:1) mixture as solvent
- ➤ HCl as catalyst (10 mol %)
- Translation of batch conditions to continuous flow
 - > Reaction in a glass flow cell (10 mL)
 - Temperature monitoring with fiber optic
 - Residence time (5 min) in Flow cell translates to time of irradiation in batch
 - 1.59 M building blocks, 2 mL/min flow rate
 - Entire cycle of 25 mL completes in 12.5 min
 - MW irradiation at 120 °C, 5 min (2 min ramp) Approx. 100g DHPM 4 in 16 hours. (52 % yield)

Automated parallel small scale synthesis (4 mmol)

Emrys™ Synthesizer

- sample robot up to 120 reactions magnetic stirring 12-15 reactions per hour

- 0-300 W up to 250 °C, 0-20 bar

- > Automated dispensing of reaction components
- > Single mode microwave irradiation
- > Automated sequential synthesis 4 mmol reaction scale Solvent: AcOH/EtOH (3:1) (3mL) 120 °C 20 min 52 % yield

Parallel synthesis in multimode cavity (8 x 80 mmol)

Anton Paar Synthos 3000™

REACTOR SPECIFICATIONS:

- ➤ Continuous MW output power (0-1400 W)
- Multimode cavity with 8 & 16 vessel rotor
- > PTFE-TFM (100 mL) / Quartz glass vessels (80 mL)
- Max. Temperature (260-300 °C) / Pressure (60-80 bar)
- > Temperature monitoring by IR thermography and an internal gas balloon

Parallel large scale synthesis of DHPM 4

- Scalability examined using 2, 4 and 8 reaction vessels (80 mmol of each component)
- > Reaction conditions:

MW irradiation at 120 °C for 20 minutes

HCI catalyst (10 mol %)

EtOH (32 mL) as solvent

No. of vessels	Reaction volume	Isolated overall yields
2	160 mmol	43 %
4	320 mmol	46 %
8	640 mmol	48 %

Conclusion

Our scale-up model studies have demonstrated, that

- Microwave conditions (batch and continuous) are instrumental in accelerating
- the synthesis and support an easy translation in reaction scale (small to large).
 Synthesis of DHPM 4 has been afforded in appreciable yields equally in monomode and multimode microwave reactors.
- An easy translation demonstrated in this case study suggests a possibility of applying microwave techniques in other scale-up syntheses.

No.	Reaction scale		Isolated overall yields
1	4 mmol	(Emrys Synthesizer)	52 %
2	40 mmol	(MicroSYNTH)	52 %
3	640 mmol	(Multiwave 3000)	48 %
4	~ 133 mmol / h	(CEM Voyager)	50 - 52 %

Acknowledgement

This work was supported by the Austrian Science Fund (FWF, P 15582 and I18-N07). We wish to acknowledge the instrument suppliers for their support and cooperation in this study.