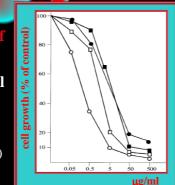
From Medicinal Plants to Bioactive Drugs

<u>Ilaria Lampronti</u>¹, Mahmud T.H. Khan², Antoine M. Saab³, Elisabetta Lambertini¹, Letizia Penolazzi¹, Roberta Piva¹ and Roberto Gambari¹

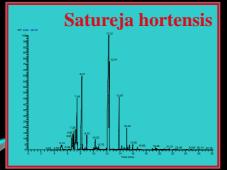
¹Department of Biochemistry and Molecular Biology, University of Ferrara, Italy (e-mail: lmi@unife.it)
²Faculty of Pharmaceutical Sciences, University of Sciences and technology of Chittagong, Bangladesh
³Faculty of Sciences II. Lebanese University, Chemistry Department, Beirut, Lebanon

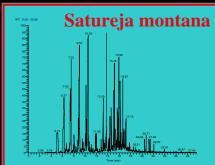
AIM: Officinal plants represent an important source of medicinal products for more that 80% of the world's population, especially in developing countries. The interest for medicinal plants and for their biologically active derivatives has increased in recent years, in relation to the possible development of novel potential drugs.


The aim of our study was to analyze the antiproliferative activity effects on human tumor cell lines and the differentiating activity on human erythroleukemic K562 cells of different extracts derived from medicinal plants of Bangladesh and Lebanon¹⁻⁴.

Antiproliferative activity on K562 cells

Inhibitory effects of **Emblica officinalis** on human tumor cell lines:


K562 (open circles)
HEL (closed circles)
Jourkat (open squares)
Raji (closed squares)



1. Khan, MTH et al. Int. J. Oncol. 20, 187-192 (2002)

2. Lampronti, I. et al. *Phytomedicine*. 10, 300-308 (2003)

RESULTS: All the extracts showing interesting biologically effects were therefore analyzed by a GC/MS system in order to correlate the biological activity of the crude samples with specific identified molecules.

 $officinalis^{I}$ demonstrated antiproliferative activity and successively pyrogallol was identified as responsible for this activity (IC50: 10-30 μM). In Satureja montana and hortensis³, we found caryophillene and α -terpineol (98.0 \pm 0.7 μ M and 75.0 \pm respectively), both showing important antiproliferative effects on K562 cells. Aegle marmelos² and Pistacia palaestina4 were studied also for their ability in inducing erythroid differentiation of K562 cells and we identified a potent agent in A. marmelos, the 5-methoxypsoralen (Bergapten). Our study suggests that the identified active derivatives deserve further evaluations as molecules inhibiting proliferation in tumor cells and in inducing erythroid differentiation

- 3. Lampronti, I. et al. Int. J. Oncol. Submitted for publication (2005)
- 4. Lampronti, I. et al. Minerva Biotecnologica, 17, 153-158 (2005)