Carbon Nanotubes by Microwave Plasma-Enhanced Chemical Vapor Deposition

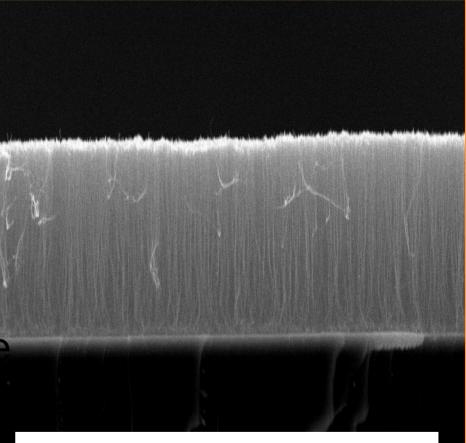
M. Maschmann², A. Goyal³, Z. Iqbal³, T.S. Fisher², <u>R. Gat¹</u>

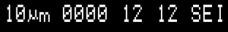
 Seki Technotron USA. Santa Clara CA, USA. rgat@sekitech.com
Purdue University, School of Mechanical Engineering and Birck Nanotechnology Center
New Jersey Institute of Technology, Department of Chemistry

MWCNT- 100mm wafer

- Spin on multiwall catalyst- no sputtering
 - 6nm Fe particles suspended in oil
- Process:
 - 50% CH4 in H2,
 - 300 W,
 - 5 Torr,
 - 850 C

100 mm

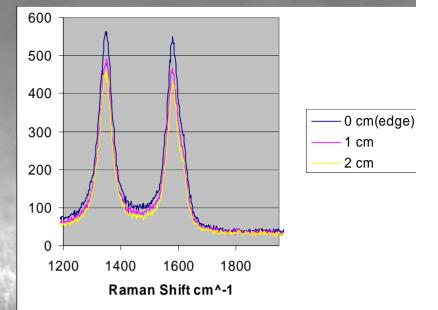



Significance of PECVD

- Plasma dissociates hydrogen/methane mix into reactive radicals mostly atomic hydrogen (H), and methyl (CH₃)
- Plasma CVD has shown vertically oriented, dense forests of carbon nanotubes.

L. C. Chen, National Taiwan Univ

15kV X2,000 10µm 0000



MWCNT/MWCVD

84-1c5t 30.0kV 6.6mm x6.00k SE(M)

5.00um

Motivation

- Provide microwave plasma deposition technology to enable:
 - Large area 200-300mm
 - deposition temperature <450C.
 - Particle and impurity control
 - Reliable, reproducible
 - Semiconductor process compatible
- Reduce required growth temperatures for SWCNTs by thermal CVD from 900-1200 °C.
- MICROWAVE Plasma generates radical density characteristic of 2000C at much lower effective temperature e.g < 450C and can be highly ionized (Low pressure ECR mode) or highly neutral (high pressure mode).

Microwave PECVD System

Process Gasses: H_2 :0-1000 sccm CH_4 :0-10 sccm

<u>Substrate DC Bias:</u> 0 – 600 V; 0 – 1.7 A

3.5 Kilowatt, 900C RF Heating of 4" Substrate

External Interlocks for Safe Hands-Free Operation

1.5kW and 2.5GHz Microwave Generator

Vacuum Chamber

Dual Wavelength Pyrometer Measures Surface Temperature

Embedded K-type thermocouple monitors stage temperature

Seki Technotron Corp. AX5200 Series

SWCNT Catalyst Synthesis

- Catalyst/support made by sol-gel method:
- Mix powders and form 'Sol':
 - Magnesium Nitrate Mg(NO₃).6H₂O, 0.5g
 - Cobalt Nitrate

 $Co(NO_3).6H_2O$,

- Ammonium Heptamolybdate
 - $(NH_4)_6 Mo_7 O_{24} \cdot 4H_2 O_{4}$
- citric acid, 3g
- distilled water
- typically 4:1 Mo:Co supported on MgO: MgO_(1-x-y)Co_xMo_y

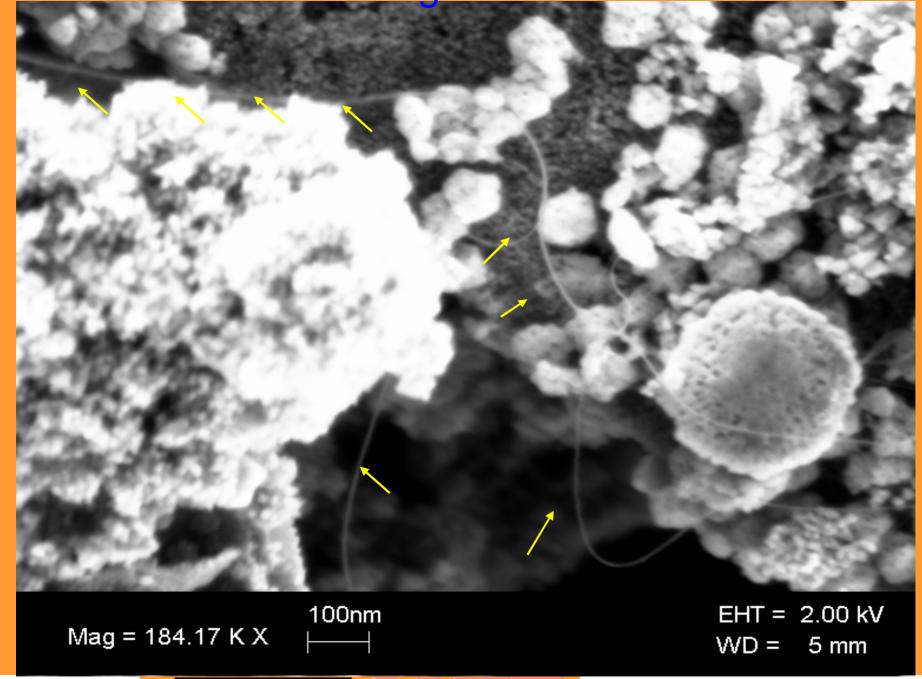
Catalyst/support Synthesis

- Solution placed in ceramic boat and loaded into 550 °C furnace for 5 minutes in air
- Resulting bimetallic Mo:Co catalyst and MgO support was ground to a fine powder using a mortar and pestle
- 0.030 grams of powder added to 25mL and ultrasonically agitated for 3 hours before being dispersed onto silicon substrates

Synthesis Conditions

Current work

Catalyst	Temperature	Pressure	Feedstock Gasses	Plasma
Mo / Co catalyst with	600 - 800 C	10 Torr	10:1 H ₂ : CH ₄	200 W
MgO support				

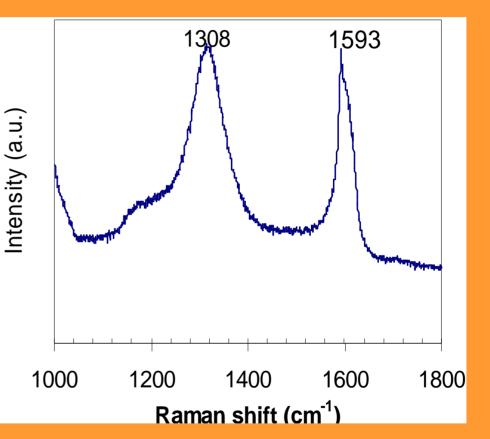

Prior PECVD SWCNT but not MICROWAVE plasma:

1) T. Kato et a., Chem. Phys. Lett., 381, 422 (2003).

2) Y. Li et al., Nano Lett., 4, 317 (2004).

	Catalyst	Temperature	Pressure	Feedstock Gasses	Plasma	
1	Fe / Co catalyst with Faujasite-type zeolite	550 - 850 C	0.5 Torr	7:4 H₂:CH₄	900 W	
	support					
	Ferratin nanoparticles and					
2	sub-monolayer e-beam evaporated iron	600 C	0.5 Torr	1:4 Ar:CH ₄	75 W	
	PURDUE IN LY E B S L T Y					
	SEKI TECHNOTRON CORP.					

SEM – Microns long bundles of SWCNTs

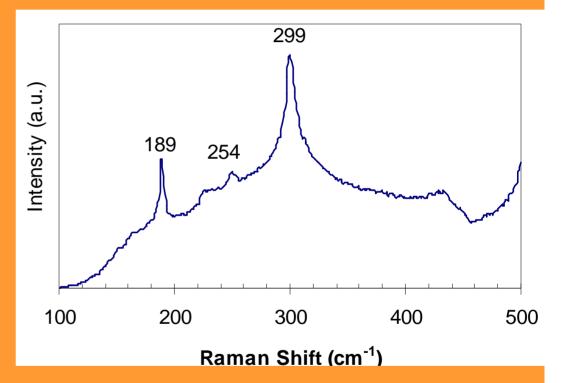


SEKI TECHNOTRON CORP.

Deposition temperature 800 °C

- D (disorder)-band at 1308 cm⁻¹ – High intensity consistent with a:C or poor resonance condition
- G (graphite)-band at 1593 cm⁻¹

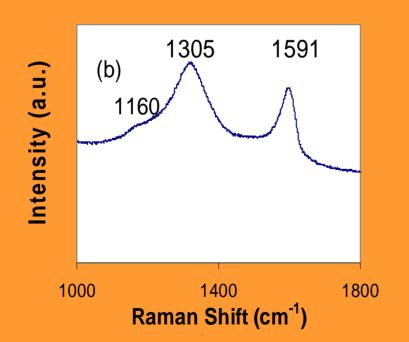
Horiba/Jobin Yvon LabRam system with cooled CCD (charge coupled device) detection and 632.8 nm laser excitation with 15 mW intensity at the source and approximately 1.5 mW at the sample

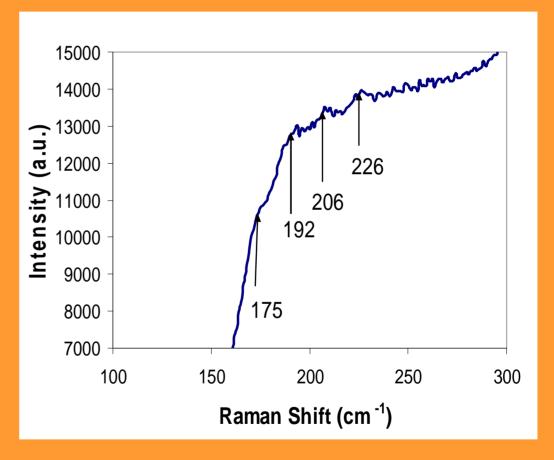


Deposition temperature 800 °C

- Radial breathing modes at 189 and 254 cm⁻¹ correspond to 1.3 and 0.9 nm diameter, respectively*
- Based on laser excitation energy and Raman shift, 0.9 nm CNTs are semiconducting while 1.3 nm CNTs are metallic**

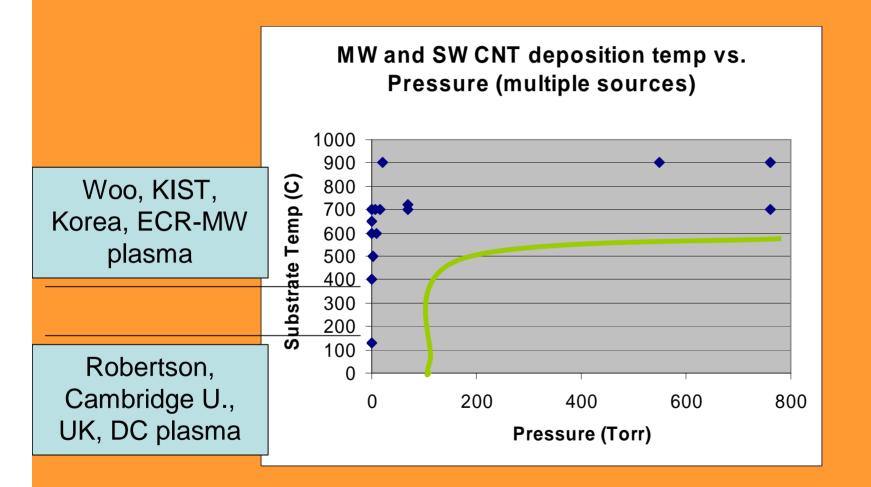
*S. M. Bachiloet al., Science, **298**, 2361 (2002). **H. Kataura et al., Synth. Met., **103**, 2555 (1999).



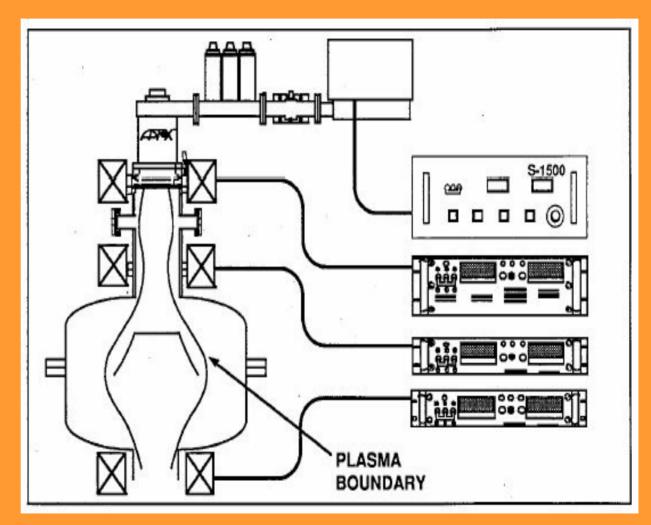


Deposition temperature 600 °C

- Weak Radial breathing modes at 175, 192, 206, and 226 cm⁻¹ corresponding to diameters from 1.2 to 1.5 nm.
- Strong D band likely a:C



Data: 'Diamond 2003', 14th European Conference on Diamond, Diamond-like Materials, Carbon Nanotubes, Nitrides and Silicon Carbide



Electron Cyclotron Resonance ECR

- mTorr Operation
- Room temperature deposition
- High rate
 - plasma density
 - radical flux

ECR- CNT Deposition System

Conclusions

- Multiwall and Single wall CNT were deposited using Sekitechnotron/ASTeX microwave PECVD.
- Deposition area 100mm diameter wafers
- Both semiconducting and metallic SWCNTs were synthesized at 600C and higher temperatures.

Acknowledgements

NJIT thanks the US Army and NSF

 Purdue thanks NASA-Purdue Institute for Nanoelectronics and Computing and Birck Nanotechnology Center

 Sekitechnotron thanks Dr. Tarun Sharda for depositions.

