We've updated our Privacy Policy to make it clearer how we use your personal data. We use cookies to provide you with a better experience. You can read our Cookie Policy here.

Advertisement

Cell Movement Analysis by AI May Be Useful for Drug Discovery

Graphical illustration of two cells on a black background.
Credit: Jesús Pineda
Listen with
Speechify
0:00
Register for free to listen to this article
Thank you. Listen to this article using the player above.

Want to listen to this article for FREE?

Complete the form below to unlock access to ALL audio articles.

Read time: 1 minute

The enormous amount of data obtained by filming biological processes using a microscope has previously been an obstacle for analyses. Using artificial intelligence (AI), researchers at the University of Gothenburg can now follow cell movement across time and space. The method could be very helpful for developing more effective cancer medications.


Studying the movements and behaviours of cells and biological molecules under a microscope provides fundamental information for better understanding processes pertaining to our health. Studies of how cells behave in different scenarios is important for developing new medical technologies and treatments.


“In the past two decades, optical microscopy has advanced significantly. It enables us to study biological life down to the smallest detail in both space and time. Living systems move in every possible direction and at different speeds,” says Jesús Pineda, doctoral student at the University of Gothenburg and first author of the scientific article in Nature Machine Intelligence.

Mathematics describes relationships of particles

Advancements have given today’s researchers such large amounts of data that analysis is nearly impossible. But now, researchers at the University of Gothenburg have developed an AI method combining graph theory and neural networks that can pick out reliable information from video clips.

Want more breaking news?

Subscribe to Technology Networks’ daily newsletter, delivering breaking science news straight to your inbox every day.

Subscribe for FREE

Graph theory is a mathematical structure that is used to describe the relationships between different particles in the studied sample. It is comparable to a social network in which the particles interact and influence one another’s behaviour directly or indirectly.


“The AI method uses the information in the graph to adapt to different situations and can solve multiple tasks in different experiments. For example, our AI can reconstruct the path that individual cells or molecules take when moving to achieve a certain biological function. This means that researchers can test the effectiveness of different medications and see how well they work as potential cancer treatments,” says Jesús Pineda.

Pharmaceutical companies already using AI

AI also makes it possible to describe all dynamic aspects of particles in situations where other methods would not be effective. For this reason, pharmaceutical companies have already incorporated this method into their research and development process.


Reference: Pineda J, Midtvedt B, Bachimanchi H, et al. Geometric deep learning reveals the spatiotemporal features of microscopic motion. Nat Mach Intell. 2023;5(1):71-82. doi: 10.1038/s42256-022-00595-0



This article has been republished from the following materials. Note: material may have been edited for length and content. For further information, please contact the cited source.