We've updated our Privacy Policy to make it clearer how we use your personal data.

We use cookies to provide you with a better experience. You can read our Cookie Policy here.

Advertisement
Identifying the Metabolism of a Healthy Embryo Could Improve Infertility Treatment
News

Identifying the Metabolism of a Healthy Embryo Could Improve Infertility Treatment

Identifying the Metabolism of a Healthy Embryo Could Improve Infertility Treatment
News

Identifying the Metabolism of a Healthy Embryo Could Improve Infertility Treatment

Read time:
 

Want a FREE PDF version of This News Story?

Complete the form below and we will email you a PDF version of "Identifying the Metabolism of a Healthy Embryo Could Improve Infertility Treatment"

First Name*
Last Name*
Email Address*
Country*
Company Type*
Job Function*
Would you like to receive further email communication from Technology Networks?

Technology Networks Ltd. needs the contact information you provide to us to contact you about our products and services. You may unsubscribe from these communications at any time. For information on how to unsubscribe, as well as our privacy practices and commitment to protecting your privacy, check out our Privacy Policy

Embryos that are most likely to result in a pregnancy are crucial to the success of in vitro fertilization (IVF) but are difficult to identify. Researchers at Yale School of Medicine, led by Emre Seli, M.D., are developing a fast, non-invasive test to help assess embryo viability for IVF.

Seli, associate professor in the Department of Obstetrics, Gynecology & Reproductive Sciences at Yale, will present new embryo selection findings at the American Society for Reproductive Medicine (ASRM) meeting held in Atlanta, Georgia from October 17 to 21.

Women undergoing infertility treatment with IVF are hormonally stimulated to produce multiple eggs, which are then fertilized in the lab. In most cases, multiple embryos are generated and cultured. Selecting embryos for implantation is currently highly subjective.

"It's a guessing game that can end in IVF failure or multiple pregnancies," said Seli. "Our goal is to find a way to pinpoint the embryos with the best chance of success, so that we can transfer fewer embryos and cut down on the possibility of multiple pregnancies without reducing the pregnancy rate."

To detect the difference between a viable and non-viable embryo, Seli and his team have studied the metabolomic profile of spent embryo cultures. A metabolomic profile is the chemical fingerprint that results from the metabolic activity of embryos in culture. The team previously found that metabolomic profiling could give an instant snapshot of the physiology of a cell. This non-invasive approach may provide a useful adjunct to the current embryo grading systems based on the structure of the embryo and the rate at which the embryo divides.

Building on this groundbreaking finding, Seli and his team have found that a viability score generated by non-invasive assessment of embryo culture media using metabolomics affected pregnancy outcomes in women treated in four different centers in Europe and Australia. This study-performed in collaboration with Molecular Biometrics, Inc. and co-authored by Denny Sakkas, Lucy Botros, Marc Henson and Kevin Judge-will be presented at the ASRM meeting.

"These findings have important implications for the more than 125,000 IVF cycles performed yearly in the United States," said Seli. "The high multiple pregnancy rates associated with IVF have significant public health consequences, such as decreased survival and increased risk of lifelong disability associated with severe prematurity."
Advertisement