We've updated our Privacy Policy to make it clearer how we use your personal data. We use cookies to provide you with a better experience. You can read our Cookie Policy here.

Advertisement

New Insights for Drug Design from the X-ray Crystallographic Structures of GPCRs

Listen with
Speechify
0:00
Register for free to listen to this article
Thank you. Listen to this article using the player above.

Want to listen to this article for FREE?

Complete the form below to unlock access to ALL audio articles.

Read time: Less than a minute

Abstract

Methodological advances in X-ray crystallography have made possible the recent solution of X-ray structures of pharmaceutically important G protein-coupled receptors (GPCRs), including receptors for biogenic amines, peptides, a nucleoside and a sphingolipid. These high-resolution structures have greatly increased our understanding of ligand recognition and receptor activation. Conformational changes associated with activation common to several receptors entail outward movements of the intracellular side of transmembrane helix 6 (TM6) and movements of TM5 toward TM6. Movements associated with specific agonists or receptors have also been described, e.g. extracellular loop 3 (EL3) in the A(2A) adenosine receptor. The binding sites of different receptors partly overlap but differ significantly in ligand orientation, depth and breadth of contact areas in TM regions, and the involvement of the ELs. A current challenge is how to utilize this structural information for the rational design of novel potent and selective ligands. For example, new chemotypes were discovered as antagonists of various GPCRs by subjecting chemical libraries to in silico docking in the X-ray structures. The vast majority of GPCR structures and their ligand complexes are still unsolved, and no structures are known outside of Family A GPCRs. Molecular modeling, informed by supporting information from site-directed mutagenesis and structure activity relationships, has been validated as a useful tool to extend structural insights to related GPCRs and to analyze docking of other ligands in already crystallized GPCRs.

This study is published online in Molecular Pharmacology and is free to access.