NIH Funds Development of Tissue Chips to Help Predict Drug Safety
Complete the form below to unlock access to ALL audio articles.
Seventeen National Institutes of Health grants are aimed at creating 3-D chips with living cells and tissues that accurately model the structure and function of human organs such as the lung, liver and heart.
Once developed, these tissue chips will be tested with compounds known to be safe or toxic in humans to help identify the most reliable drug safety signals - ultimately advancing research to help predict the safety of potential drugs in a faster, more cost-effective way.
The initiative marks the first interagency collaboration launched by the NIH's recently created National Center for Advancing Translational Sciences (NCATS).
Tissue chips merge techniques from the computer industry with modern tissue engineering by combining miniature models of living organ tissues on a transparent microchip.
Ranging in size from a quarter to a house key, the chips are lined with living cells and contain features designed to replicate the complex biological functions of specific organs.
NIH's newly funded Tissue Chip for Drug Screening initiative is the result of collaborations that focus the resources and ingenuity of the NIH, Defense Advanced Research Projects Agency (DARPA) and U.S. Food and Drug Administration.
NIH's Common Fund and National Institute of Neurological Disorders and Stroke led the trans-NIH efforts to establish the program. The NIH plans to commit up to $70 million over five years for the program.
“Serious adverse effects and toxicity are major obstacles in the drug development process,” said Thomas R. Insel, M.D., NCATS acting director.
Insel continued, “With innovative tools and methodologies, such as those developed by the tissue chip program, we may be able to accelerate the process by which we identify compounds likely to be safe in humans, saving time and money, and ultimately increasing the quality and number of therapies available for patients.”
More than 30 percent of promising medications have failed in human clinical trials because they are determined to be toxic despite promising pre-clinical studies in animal models.
Tissue chips, which are a newer human cell-based approach, may enable scientists to predict more accurately how effective a therapeutic candidate would be in clinical studies.