We've updated our Privacy Policy to make it clearer how we use your personal data.

We use cookies to provide you with a better experience. You can read our Cookie Policy here.

Advertisement
Novel Therapeutic Approach to Treat Osteoarthritis
News

Novel Therapeutic Approach to Treat Osteoarthritis

Novel Therapeutic Approach to Treat Osteoarthritis
News

Novel Therapeutic Approach to Treat Osteoarthritis

Two-dimensional nanoparticles interacting with stem cells and directing differentiation toward cartilage-lineage. Texas A&M University College of Engineering
Read time:
 

Want a FREE PDF version of This News Story?

Complete the form below and we will email you a PDF version of "Novel Therapeutic Approach to Treat Osteoarthritis"

First Name*
Last Name*
Email Address*
Country*
Company Type*
Job Function*
Would you like to receive further email communication from Technology Networks?

Technology Networks Ltd. needs the contact information you provide to us to contact you about our products and services. You may unsubscribe from these communications at any time. For information on how to unsubscribe, as well as our privacy practices and commitment to protecting your privacy, check out our Privacy Policy

Researchers from Texas A&M University, led by Dr. Akhilesh K. Gaharwar, have developed a new way to deliver treatment for cartilage regeneration.

Gaharwar, assistant professor in the Department of Biomedical Engineering at Texas A&M, said the nanoclay-based platform for sustained and prolonged delivery of protein therapeutics has the potential to impact treating osteoarthritis, a degenerative disease that affects nearly 27 million Americans and is caused by breakdown of cartilage that can lead to damage of the underlying bone.

As America's population ages, the number of osteoarthritis incidences is likely to increase. One of the greatest challenges with treating osteoarthritis and subsequent joint damage is repairing the damaged tissue, especially as cartilage tissue is difficult to regenerate.

One method for repair or regeneration of damaged cartilage tissue is to deliver therapeutic growth factors. Growth factors are a special class of proteins that can aid in tissue repair and regeneration. However, current versions of growth factors break down quickly and require a high dose to achieve a therapeutic potential. Recent clinical studies have demonstrated significant adverse effects to this kind of treatment, including uncontrolled tissue formation and inflammation.

In Texas A&M's study, published in ACS Applied Materials and Interfaces, Gaharwar's lab has designed two-dimensional (2D) mineral nanoparticles to deliver growth factors for a prolonged duration to overcome this drawback. These nanoparticles provide a high surface area and dual charged characteristics that allow for easy electrostatic attachment of growth factors.

"These nanoparticles could prolong delivery of growth factors to human mesenchymal stem cells, which are commonly utilized in cartilage regeneration," Gaharwar said. "The sustained delivery of growth factors resulted in enhanced stem cell differentiation towards cartilage lineage and can be used for treatment of osteoarthritis."

"By utilizing the nanoparticle for therapeutic delivery it is possible to induce robust and stable differentiation of stem cells," said Dr. Lauren M. Cross, senior author of the study and research assistant in the biomedical engineering department. "In addition, prolonged delivery of the growth factor could reduce overall costs by reducing growth factor concentration as well as minimizing the negative side effects."

This article has been republished from materials provided by Texas A&M University. Note: material may have been edited for length and content. For further information, please contact the cited source.

Reference: Lauren M. Cross, et al. Sustained and Prolonged Delivery of Protein Therapeutics from Two-Dimensional Nanosilicates. ACS Appl. Mater. Interfaces. (2019), 11 (7), pp 6741–6750 DOI: 10.1021/acsami.8b17733


Advertisement