We've updated our Privacy Policy to make it clearer how we use your personal data.

We use cookies to provide you with a better experience. You can read our Cookie Policy here.

Advertisement
Plasticell, CellSpring Collaborate
News

Plasticell, CellSpring Collaborate

Plasticell, CellSpring Collaborate
News

Plasticell, CellSpring Collaborate

Read time:
 

Want a FREE PDF version of This News Story?

Complete the form below and we will email you a PDF version of "Plasticell, CellSpring Collaborate"

First Name*
Last Name*
Email Address*
Country*
Company Type*
Job Function*
Would you like to receive further email communication from Technology Networks?

Technology Networks Ltd. needs the contact information you provide to us to contact you about our products and services. You may unsubscribe from these communications at any time. For information on how to unsubscribe, as well as our privacy practices and commitment to protecting your privacy, check out our Privacy Policy

Plasticell has announced it is collaborating with CellSpring, an innovative company that has developed a high throughput 3D cell culture system, the 3D Bloom® Biopolymer Platform, which enables more informed "stop/go" decisions for preclinical candidates. Plasticell and CellSpring are developing tissue models using 3D Bloom Biopolymer seeded with hMSCs that are subsequently differentiated to bone, cartilage and brown/white fat tissue using CombiCult-derived differentiation media. 3D cultures of cells resemble natural tissues more closely compared to conventional 2D cultures grown on flat dishes.

In particular, 3D tissues have more accurate biological responses to drug treatment and are used in the pharmaceutical industry to identify promising lead compounds in all stages of drug discovery. Plasticell has used its proprietary Combinatorial Cell Culture™ (CombiCult®) platform to develop fully defined, highly effective media formulations to differentiate stem cells, for applications in drug discovery research and cell therapy.

In particular, Plasticell has used the platform to develop media for rapid, reliable differentiation of human mesenchymal stem cells (hMSCs) to high quality osteocytes, chondrocytes and adipocytes (both white and brown), with a view to creating tissue models for drug screening and cell therapies.
 
While Plasticell’s osteogenic media formulation has been licenced to MilliporeSigma for research use only (marketed as OsteoMAX-XF), Plasticell has retained rights to use the formulation and derivatives to develop therapeutic products, such as a cell-based therapy for repair of bone fractures. The global bone grafts and substitutes market is estimated to be $2.5bn per year and growing rapidly.
 
“Testing Plasticell’s formulations in our system it became clear that impressive 3D bone structures were being formed,’ said Dr Chris Millan, co-founder and CTO of CellSpring. “After only a few days in culture we saw up regulation of osteogenic markers and morphological changes. The bone structures became white and opaque, whereas normally micro tissues remain quite transparent to the naked eye, and after staining with Alizarin red we were barely able to transmit light through them in order to image the cells - this is something we have never seen before using our system.”

Advertisement